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ABSTRACT 

 
Noncommutative rational functions, which extend classical rational functions to settings where variables do not 

commute, play a crucial role in various domains including system theory, control, optimization, and formal language theory. 

This paper provides a comprehensive exploration of these functions, focusing on their construction, properties, and the 

mathematical tools needed for their analysis. We begin by defining noncommutative rational functions and discussing their 

algebraic structure, highlighting the absence of a canonical form akin to coprime fraction representations in the commutative 

case. The realization theory for noncommutative rational functions is then developed, extending classical concepts such as state 

space models, controllability, observability, and minimality to the noncommutative setting. This theory provides a structured 

framework for representing noncommutative rational functions in a minimal state space form, which is essential for applications 

in system theory and control. To further analyze these functions, we introduce a difference-differential calculus specifically 

designed for noncommutative rational functions. This calculus generalizes traditional differentiation and finite difference 

operators to the noncommutative context, allowing for the detailed study of how these functions change with respect to 

noncommutative variables. The calculus also enables the development of higher-order operators and finite difference formulas, 

which are useful in various analytical and computational applications. 

 

Keywords- Agricultural, Groundwater Quality, Fertilizers, environment and diseases. 

 

 

 

I. INTRODUCTION 
 

Noncommutative rational functions have gained prominence in various areas of mathematics and engineering, 

particularly in system theory, control theory, and formal language theory. These functions extend the classical concept of 

rational functions to settings where the variables do not commute, leading to a richer and more complex algebraic 

structure. Unlike commutative rational functions, which are well-understood and can be represented by coprime fractions, 

noncommutative rational functions lack a canonical form and exhibit behavior that is deeply intertwined with the 

underlying noncommutative algebra. In the context of formal languages and finite automata, the study of noncommutative 

rational functions was initiated by system theory. The relationship between the theory of finite automata and formal power 

series in noncommuting variables was the subject of Kleene, Schützenberger, and Fliess's early work[1]. This connection 

established the foundation for a state space realization theory of noncommutative rational functions, which has since 

become a critical instrument in the analysis of Linear Matrix Inequalities (LMIs) and robust control.  

Noncommutative rational functions are particularly advantageous in scenario where the natural variables are 

matrices and the issue pertains to rational expressions in these matrix variables in system theory.  This dimensional 

independence is critical in converting complex and numerically challenging rational matrix inequalities into more 

manageable linear matrix inequalities. The realization theory for noncommutative rational functions provides a framework 

for understanding the structure and behavior of these functions, offering tools for system identification, control design, and 

stability analysis[2]. The absence of a canonical coprime fraction representation—a must in the commutative setting—is 
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one of the main obstacles when dealing with noncommutative rational functions. The creation of new instruments and 

methods, like the difference-differential calculus presented in this study, is required due to this complexity. This calculus 

offers a potent way to analyze the behavior of noncommutative rational functions by extending the traditional ideas of 

differentiation and finite differences to the noncommutative domain.  

This paper has two objectives. Its first goal is to provide a thorough analysis of the fundamental ideas and findings 

in the theory of noncommutative rational functions, with an emphasis on their realization theory. This covers minimality in 

the noncommutative situation, controllability, observability, and state space realizations in depth. Secondly, the article 

presents a difference-differential calculus specifically designed for rational functions that are noncommutative. This 

calculus is intended to be an adaptable instrument for mathematicians and system theorists, enabling the manipulation and 

study of noncommutative rational functions in a range of contexts.  This study adds to the continuing endeavor to expand 

classical system theory and control approaches to noncommutative environments by creating these fundamental tools. The 

methods discussed here have practical consequences for the design and analysis of complex systems where 

noncommutative variables are important, in addition to their theoretical significance.  

 

II. NONCOMMUTATIVE RATIONAL FUNCTIONS 
 

Noncommutative rational functions represent a significant extension of classical rational functions, where the 

variables involved do not commute. This noncommutativity introduces new algebraic challenges and opportunities, making 

the study of these functions both rich and complex[3]. In contrast to their commutative counterparts, noncommutative 

rational functions do not admit a straightforward representation such as a coprime fraction form, which significantly 

complicates their analysis and application.  

 

III. DEFINITION AND CONSTRUCTION 
 

Noncommutative rational functions are constructed from noncommutative polynomials, which are polynomials 

where the order of multiplication matters. Specifically, a noncommutative polynomial in d variables (𝑧1, 𝑧2 … … … . 𝑧𝑑) over 

a field K is an expression of the form: 

 

P = ∑ 𝒑𝒘𝒛𝒘𝒘∈𝑭𝒅
 

 

where 𝐹𝑑 denotes the free semigroup generated by d symbols, representing all possible products of the variables 

(𝑧1, 𝑧2 … … … . 𝑧𝑑) in any order. The coefficients 𝑝𝑤 belong to the field K, and 𝑧𝑤represents a word formed by these 

variables. A noncommutative rational expression is formed by combining these operations in a specific order. The domain 

of such an expression is the set of all tuples of matrices on which the expression can be evaluated without encountering 

undefined operations (such as division by a non-invertible matrix). 

Two noncommutative rational expressions are considered equivalent if they yield the same result when evaluated 

on any tuple of matrices within their common domain of regularity. A noncommutative rational function is then defined as 

an equivalence class of noncommutative rational expressions. The complexity of these functions arises from the fact that, 

unlike in the commutative case, different expressions can represent the same function but may have widely varying forms 

and degrees of complexity. 

 

IV. SKEW FIELD STRUCTURE 
 

Noncommutative rational functions form a division ring or skew field, with every nonzero element having a 

multiplicative inverse. This distinguishes commutative rational functions from noncommutative rational functions, which 

are commutative in multiplication, and is similar to a field. The existence of a skew field structure for noncommutative 

rational functions relies on the fact that any nonzero noncommutative rational function is invertible[4]. This result is 

nontrivial and requires a detailed understanding of the algebraic properties of noncommutative polynomials and their 

evaluations on matrices. The skew field of noncommutative rational functions, denoted by K((𝑧1, 𝑧2 … … … . 𝑧𝑑)), serves as 

the noncommutative analogue of the field of rational functions in the commutative setting. 

 

V. CANONICAL FORMS AND REPRESENTATIONS 
 

The distinction between commutative and noncommutative rational functions lies in the absence of a canonical 

form, like the coprime fraction representation in the commutative case. In the commutative context, rational functions can 

be expressed as a fraction of two coprime polynomials, but in the noncommutative environment, such a representation is 

not available, impacting the expression complexity[5]. For example, a noncommutative rational function can be 
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represented by multiple different rational expressions, each involving different sequences of operations and possibly 

different intermediate forms. The minimal complexity of these representations can be arbitrarily high, and determining the 

simplest form of a noncommutative rational function is a challenging problem. 

Evaluation on Matrices 

Noncommutative rational functions are often evaluated on tuples of matrices, which provide a concrete and useful 

way to understand their behavior. Given a noncommutative rational expression and a tuple of matrices (𝑧1, 𝑧2 … … … . 𝑧𝑑) of 

the same size, the expression can be evaluated by substituting each variable 𝑧𝑖with the corresponding matrix 𝑧𝑖. The result 

is a matrix whose size depends on the size of the input matrices. 

A crucial aspect of evaluating noncommutative rational functions on matrices is the domain of regularity, which is 

the set of all tuples of matrices on which the function is well-defined[6]. This domain depends on the specific form of the 

rational expression and the operations involved. For example, if the expression involves inverting a matrix, then the 

domain of regularity excludes any tuple of matrices that leads to a non-invertible matrix during the evaluation. 

Uniqueness and Universal Skew Fields 

The skew field of noncommutative rational functions is not necessarily unique. There can be multiple skew fields 

of fractions associated with a given ring of noncommutative polynomials, each with different properties and applications. 

However, the notion of a universal skew field of fractions provides a framework for understanding the uniqueness of these 

structures. 

A universal skew field of fractions for a ring R is a skew field that contains R and satisfies a specific universal 

property: for any homomorphism from R to another skew field, there exists a unique extension of this homomorphism to 

the universal skew field. This property ensures that the universal skew field is, in a sense, the most comprehensive and 

general skew field that can be associated with the ring R. 

Matrix-Valued Noncommutative Rational Functions 

Matrix-valued noncommutative rational functions, which use matrices instead of scalars as coefficients, are useful 

in system theory due to their natural application in multi-input, multi-output systems. These functions can be evaluated on 

tuples of matrices, representing the combined effects of matrix algebra and noncommutative operations[7]. They are 

similar to scalar noncommutative rational functions, making them useful in studying complex systems. The domain of 

regularity for matrix-valued noncommutative rational functions is defined analogously to the scalar case, but it is important 

to consider the regularity of each matrix entry separately. The overall domain of regularity is the intersection of the 

domains for each entry in the matrix. 

Noncommutative rational functions provide a powerful and flexible framework for extending classical algebraic 

concepts to noncommutative settings. Their applications in system theory, control, and formal languages demonstrate their 

utility, but their inherent complexity and the lack of canonical representations pose significant challenges for analysis and 

computation. The development of a skew field structure, coupled with the study of matrix-valued functions and domains of 

regularity, forms the basis for a robust mathematical theory that continues to evolve and expand into new areas of research. 

 

VI. OVERVIEW OF NONCOMMUTATIVE REALIZATION THEORY 
 

A rational function is realized as a transfer function of a dynamical system in classical system theory, which is 

typically described by state space equations. Transfer functions of systems with evolution along the free semigroup 𝐹𝑑, 

generated by noncommuting variables, are used to represent noncommutative rational functions[8]. The central concept of 

noncommutative realization theory is to link a state space model with a noncommutative rational function. In this model, 

the dynamics of the system are described by noncommutative differential equations, which reflect the noncommutative 

character of the variables. 

State Space Realizations 

A state space realization of a matrix-valued noncommutative rational function R(z) in d noncommuting variables 

𝑧1,𝑧2,…………𝑧𝑑 is typically expressed in the form: 

 

Rz = D+C(𝐈𝐦 − 𝐀𝟏𝐙′𝟏 … … … … . 𝐀𝐝𝐙′𝐝)−𝟏B 

where: 

− 𝐴1, 𝐴2,……………..𝐴𝑑are m×m matrices representing the system's dynamics with respect to each noncommutative 

variable 𝑧1,𝑧2,…………𝑧𝑑. 

− B is an m ×q matrix representing the input-to-state mapping. 

− C is a p × m matrix representing the state-to-output mapping. 

− D is a p ×q  matrix representing the direct input-to-output mapping. 

 

This realization corresponds to a system of the form: 
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x(𝒈𝒊,,w) = 𝑨𝒊x(w) + 𝑩𝒊,u(w), i = 1,2,3…………,d. 

y(w) = Cx(w) + Du(w) 

where w denotes a word in the free semigroup 𝐹𝑑, and 𝑔𝑖 are the generators of the semigroup. The system evolves as the 

word w grows, with each letter 𝑔𝑖 corresponding to the action of the matrix 𝐴𝑖on the state vector x(w). 

Controllability, Observability, and Minimality 

Three critical concepts in realization theory are controllability, observability, and minimality. These 

characteristics establish if a realization is the simplest conceivable realization and whether it reflects the dynamics of the 

noncommutative rational function sufficiently. 

- Controllability: If an adequate series of inputs can be used to move a system from any beginning state to any other state, 

then the realization is controllable. Formally, if the controllability matrix is there, the realization is controllable. 

C = span{𝑨𝟏
𝒌𝑩𝟏, 𝑨𝟐

𝒌𝑩𝟐,……………………,𝑨𝒅
𝒌𝑩𝒅 , k≥ 𝟎} 

 spans the entire state space Km. 

- Observability: A realization is observable if the system's internal state can be uniquely determined from its outputs over 

time. This means that if the output y(w) is zero for all w ∈ 𝐹𝑑, then the initial state must have been zero. The observability 

matrix 𝜗=  ⋂ ker (𝐶𝐴𝑤)𝑤∈𝐹𝑑
 should be trivial, i.e., only the zero vector belongs to this intersection. 

- Minimality: A realization is minimal if it has the smallest possible state space dimension among all realizations of the 

given noncommutative rational function. Minimal realizations are both controllable and observable. The uniqueness of 

minimal realizations (up to similarity transformations) is a hallmark of realization theory, providing a canonical form for 

representing noncommutative rational functions. 

Examples of Noncommutative Systems 

Two notable examples of noncommutative systems are the Fornasini-Marchesini and Givone-Roesser systems, 

which generalize classical state space models to the noncommutative setting. 

1. Fornasini-Marchesini Systems: These systems evolve along the free semigroup 𝐹𝑑 and are described by equations of the 

form: 

x(𝑔𝑖,,w) = 𝐴𝑖x(w) + 𝐵𝑖,u(w), i = 1,2,3…………,d. 

y(w) = Cx(w) + Du(w) 

where the state x(w) and input u(w) evolve as the word w grows. The transfer function of such a system is a matrix-valued 

noncommutative rational function, with the state space realization providing insights into the function's structure. 

2. Givone-Roesser Systems: These systems are another class of noncommutative systems, characterized by a more 

structured state space that is divided into multiple components. The system's dynamics are described by: 

𝑥1(𝑔𝑖,,w) = 𝐴11𝑥1(w) +………………….+𝐴1𝑑𝑥𝑑(w) + 𝐵1u(w), 

⋮ 
⋮ 

𝑥𝑑(𝑔𝑑,,w) = 𝐴𝑑1𝑥1(w) +………………….+𝐴𝑑𝑑𝑥𝑑(w) + 𝐵𝑑u(w), 

y(w) = 𝐶𝑑1𝑥1(w) +………………….+𝐶𝑑𝑥𝑑(w) + Du(w) 

    

 

The transfer function for these systems, similar to Fornasini-Marchesini systems, is a matrix-valued 

noncommutative rational function, but with additional symmetry and structure due to the division of the state space. 

Implications for System Theory and Control 

The realization theory for noncommutative rational functions has significant implications for system theory and 

control, particularly in the analysis and design of complex systems involving noncommuting variables. By providing a 

structured way to represent and analyze these functions, realization theory allows for the development of robust control 

strategies, the analysis of system stability, and the synthesis of controllers that can handle the inherent complexity of 

noncommutative dynamics. Moreover, the minimal realization of a noncommutative rational function serves as a canonical 

representation, simplifying the analysis of system properties and enabling more efficient computational techniques. The 

connection between the Hankel operator and rational functions further strengthens the link between algebraic and analytic 

methods in noncommutative system theory. 

 

VII. DIFFERENCE-DIFFERENTIAL CALCULUS 
 

Concepts from classical calculus, such differentiation and finite differences, are extended to noncommutative variables 

in the difference-differential calculus for noncommutative rational functions. This calculus offers an effective toolbox for 

studying and working with noncommutative rational functions, especially in situations when the noncommutative character 

of the variables makes regular calculus ineffective. The definition of difference-differential operators, their characteristics, 

and their uses in the analysis of noncommutative rational functions are some of the fundamental concepts covered in this 

area of the calculus course. 
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Overview of Differential–Differential Calculus 

In the classical commutative setting, calculus is built around the concepts of derivatives and finite differences, 

which measure the rate of change of a function or the difference between function values at different points. These 

concepts are central to both the analysis of smooth functions and the approximation of function behavior. However, when 

the variables involved do not commute, the standard tools of calculus need significant modifications to account for the 

noncommutative interactions between the variables. 

The difference-differential calculus for noncommutative rational functions addresses these challenges by 

introducing operators that generalize the classical notions of differentiation and finite differences to the noncommutative 

setting. These operators act on noncommutative rational functions, allowing for the analysis of their behavior with respect 

to changes in the underlying noncommutative variables. 

Definition of Difference-Differential Operators 

The central objects in this calculus are the difference-differential operators ∆𝑗, where j indexes the 

noncommutative variables. These operators map a noncommutative rational function to a new function that captures how 

the original function changes with respect to the variable 𝑍𝑗. The operators are defined recursively, starting with 

noncommutative polynomials and extending to more complex rational expressions. 

1. For Noncommutative Polynomials: Consider a noncommutative polynomial P(z) in variables (𝑍1, 𝑍2, 𝑍3 … … … . 𝑍𝑑). The 

difference-differential operator ∆𝑗 applied to P(z) is defined as: 

∆𝑗 (P) = ∑ 𝑃𝑤𝑤𝜖𝐹𝑑
    ∑ 𝑍𝑢  ⊗  𝑍′𝑣𝑢,𝑣:𝑤=𝑢𝑔𝑖𝑣  

where w is a word in the free semigroup 𝐹𝑑generated by ( 𝑍1, 𝑍2 … … … . 𝑍𝑑), and 𝑍𝑢, 𝑍𝑣′ are sub words of w that partition 

it around 𝑔𝑖. 

2. For Noncommutative Rational Functions: The definition extends to noncommutative rational functions by applying the 

operator ∆𝑗   to the components of any rational expression recursively. Specifically: 

   - Linearity: ∆𝑗  is linear, so ∆𝑗 (𝑅1+𝑅2) = ∆𝑗  𝑅1 + ∆𝑗 𝑅2 for any two rational expressions 𝑅1 and 𝑅2. 

   - Product Rule: For a product of two rational expressions, 𝑅1, 𝑅2, the operator satisfies a noncommutative product rule: 

∆𝑗 (𝑅1𝑅2) = (𝑅2 ⊗ 1) ∆𝑗(𝑅1)+ (𝑅1 ⊗ 1) ∆𝑗(𝑅2) 

   - Inversion Rule: For the inverse of a noncommutative rational expression R, the operator satisfies: 

 ∆𝑗  (𝑅−1) = −(𝑅−1 ⊗ 1) ∆𝑗(R) (1 ⊗ 𝑅−1) 

        These rules ensure that  ∆𝑗  behaves consistently with the noncommutative nature of the functions it acts upon. 

Applications of Difference-Differential Calculus 

The difference-differential calculus has broad applications in the analysis of noncommutative rational functions. 

Some of the key applications include: 

1. Directional Derivatives: The operators ∆𝑗   can be interpreted as directional derivatives in the noncommutative setting. 

For a noncommutative rational function R(z), ∆𝑗 (R) measures the change in R as the variable 𝑧𝑗  varies, while holding other 

variables fixed. This is analogous to the classical concept of partial derivatives but generalized to account for 

noncommutative interactions. 

2. Backward Shifts: The calculus provides tools for defining backward shift operators, which shift the arguments of a 

noncommutative rational function in a manner that respects the noncommutative structure. These operators are crucial in 

system theory, particularly in the analysis of stability and control for noncommutative systems. 

3. Higher-Order Operators: Just as in classical calculus, where higher-order derivatives provide deeper insights into the 

behavior of a function, higher-order difference-differential operators can be defined to capture more intricate aspects of 

noncommutative rational functions. These operators are constructed by iteratively applying ∆𝑗   to the resulting functions. 

Evaluation and Extended Domains 

Evaluating the difference-differential operators on noncommutative rational functions requires careful 

consideration of the domains of these functions. For a noncommutative rational function R(z), the domain of regularity is 

the set of all tuples of matrices Z for which the function is well-defined. When applying the operator ∆𝑗, the resulting 

function typically has a domain that reflects the combined regularity of the original function and the operator's action. 

The extended domain of regularity, edom R, is defined as the union of the domains of all possible rational expressions that 

represent R. This concept ensures that the operator ∆𝑗  is well-defined and can be applied consistently across different 

representations of the function. 

Theorems and Fundamental Results 

Several key theorems provide a rigorous foundation for the difference-differential calculus for noncommutative 

rational functions: 

1. Equivalence Preservation: The operator ∆𝑗   preserves the equivalence of noncommutative rational expressions. This 

means that if two expressions represent the same noncommutative rational function, then applying ∆𝑗  to both expressions 

yields equivalent results. 
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2. Evaluation on Generic Matrices: For any noncommutative rational function R(z), the operator ∆𝑗  (R) can be evaluated on 

tuples of generic matrices. The result is a matrix-valued function that reflects how R(z) changes with respect to 𝑧𝑗. This 

evaluation is crucial for applications in system theory, where functions are often studied via their matrix representations. 

Examples and Illustrations 

To demonstrate the use of difference-differential calculus, let us examine the following instances: 

1. Matrix-Valued Noncommutative Rational Function: Let R(z) be a matrix-valued noncommutative rational function 

given by: 

R(z) = C(𝐼𝑚 −  𝐴1𝑍1 … … … … . 𝐴𝑑𝑍𝑑)−1B 

Applying the operator ∆𝑗  to R(z) yields: 

∆𝑗(R) = C(𝐼𝑚 −  𝐴1𝑍1 … … … … . 𝐴𝑑𝑍𝑑)−1 𝐴𝑗 ⊗(𝐼𝑚 −  𝐴1𝑍′1 … … … … . 𝐴𝑑𝑍′𝑑)−1B 

 This expression provides insights into how the function changes with respect to the variable 𝑧𝑗. 

2. Product of Two Noncommutative Rational Functions: Consider two noncommutative rational functions 𝑅1(z) and 𝑅2(z). 

The operator ∆𝑗 applied to the product 𝑅1(z) 𝑅2(z). follows the product rule: 

∆𝑗 (𝑅1𝑅2) = (𝑅2 ⊗ 1) ∆𝑗(𝑅1)+ (𝑅1 ⊗ 1) ∆𝑗(𝑅2) 

This rule demonstrates the noncommutative property of the variables and guarantees that the calculus maintains the 

product structure of the functions. 

Implications for System Theory and Control 

The difference-differential calculus for noncommutative rational functions has profound implications for system 

theory and control, especially in areas where noncommutative dynamics play a central role. By providing a framework for 

analyzing how noncommutative rational functions change with respect. 

 

VIII. APPLICATIONS 
 

The theory of noncommutative rational functions and the accompanying tools of realization theory and difference-

differential calculus find extensive applications across various fields such as system theory, control engineering, 

optimization, quantum computing, and formal languages. These applications leverage the unique properties of 

noncommutative rational functions to model, analyze, and solve problems where the order of operations is crucial, and 

where classical commutative methods fall short. This section delves into some of the key applications, illustrating the 

breadth and impact of noncommutative rational functions. 

1. System Theory and Control 

Robust Control Systems 

Design and analysis of resilient control systems depend on noncommutative rational functions, especially in 

systems displaying organized, perhaps time-varying uncertainty. 

- State Space Realizations: Uncertainties in robust control often manifest in a structured noncommutative manner, such 

as those resulting from time-varying parameters or interactions between many variables. Noncommutative rational 

functions can model these uncertainties accurately. The realization theory for these functions allows for the derivation 

of minimal state space models that are used to design controllers robust to these uncertainties. This approach is 

essential in ensuring system stability and performance under a wide range of operating conditions. 

- Linear Matrix Inequalities (LMIs): Many control problems involve optimization constraints that are expressed as 

LMIs, particularly in scenarios involving uncertain parameters modeled by noncommutative variables. 

Noncommutative rational functions facilitate the conversion of complex, dimension-dependent rational matrix 

inequalities into dimension-independent LMIs, simplifying the problem and making it more tractable for numerical 

solvers. This conversion is crucial in control applications where real-time optimization is needed, such as in adaptive 

control systems. 

 

IX. FORMAL LANGUAGES AND AUTOMATA THEORY 
 

Modeling Automata and Formal Power Series 

Originally modeled by formal language theory, where they represent the behavior of automaton and formal power 

series over noncommuting variables, noncommutative rational functions have roots. 

- Recognizable Formal Power Series: A visible series in automaton theory is one that an automaton can depict. 

Noncommutative rational functions naturally describe these series, particularly when the automaton’s transitions 

involve noncommutative operations. This is particularly relevant in the study of languages over noncommuting 

alphabets, where the order of symbols affects the language generated. 

- Weighted Automata: Weighted automata, which assign weights to transitions between states, often operate under 

noncommutative rules, especially in systems where the transitions are dependent on the sequence of operations. 

Noncommutative rational functions model these weighted automata, allowing for the analysis of their behavior and the 
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computation of outputs. This application is critical in areas such as natural language processing, where the sequence of 

operations (e.g., word order) significantly impacts meaning. 

Optimization in Language Processing 

Optimization challenges often occur when dealing with formal languages, specifically when developing efficient 

algorithms for tasks like as language recognition, parsing, and other computer processes. 

- Minimization of Automata: A typical optimization challenge is to minimize an automaton's state count while still 

maintaining its behavior. Noncommutative rational functions help model this problem, and the realization theory 

allows for the derivation of minimal state automata. This minimization reduces the computational complexity of tasks 

such as language recognition and automaton-based parsing. 

- Symbolic Computation: In symbolic computation, where expressions over noncommuting variables must be 

manipulated, noncommutative rational functions provide a framework for representing and simplifying these 

expressions. This is particularly useful in computer algebra systems that handle noncommutative algebra, such as 

those used in quantum mechanics or advanced cryptography. 

 

X. OPTIMIZATION AND LINEAR MATRIX INEQUALITIES 
 

Dimension-Independent Optimization 

Noncommutative rational functions play a crucial role in optimizing systems governed by linear matrix 

inequalities (LMIs), which are prevalent in control, signal processing, and convex optimization. 

- Solving Rational Matrix Inequalities: Optimization problems often involve rational expressions in matrices, especially 

in scenarios where the matrices represent system parameters that do not commute.  

- Semidefinite Programming (SDP): Semidefinite programming (SDP) is a convex optimization technique that enhances 

a linear objective function by adhering to positive matrices constraints.  Noncommutative rational functions help 

formulate these constraints when the involved variables are noncommutative, making SDP a powerful tool for solving 

complex optimization problems in robust control and other areas. 

Structured Optimization Problems 

Many practical optimization problems exhibit additional structure, such as symmetries or dependencies between 

variables, which can be exploited using noncommutative rational functions. 

- Optimization with Noncommutative Variables: In optimization problems where the variables do not commute (e.g., in 

distributed control systems or quantum optimization), noncommutative rational functions provide the appropriate 

mathematical framework. The difference-differential calculus may be used to calculate gradients and other 

optimization-related variables, allowing for the creation of efficient algorithms for solving these structured problems.  

- Multi-Objective Optimization: In control systems where many goals, such as performance, stability, and robustness, 

must be optimized at the same time, noncommutative rational functions enable the modeling of interdependencies 

across objectives. The realization theory assures that these interdependencies are represented in a limited state space, 

making it easier to build controllers that successfully balance conflicting goals.  

 

XI. QUANTUM INFORMATION AND COMPUTATION 
 

Modeling Quantum Systems 

Noncommutative rational functions are a natural tool for studying quantum information theory and quantum 

computing systems since these fields entail noncommutative operations by nature. 

- Quantum Circuits: Quantum gates applied in varying orders are examples of operations that do not commute and 

regulate quantum circuits, which use quantum bits (qubits) to execute computations. Quantum algorithm design and 

implementation may be optimized by using noncommutative rational functions to represent the general behavior of 

these circuits. By helping to simplify these circuits, the realization theory reduces the amount of quantum resources 

needed. 

The concept of quantum entanglement, in which the states of many particles are noncommutatively reliant upon 

one another, is a key feature of quantum physics. The dynamics of entangled states and the impact of measurement 

procedures on these states may be modeled by noncommutative rational functions, offering insights into quantum 

communication and information processing.  

Quantum Computing Error Correction 

Since noncommutative rational functions are utilized to simulate and reduce faults in quantum systems, error 

correction is a crucial problem in quantum computing.  

- Quantum error-correcting codes rely on noncommutative procedures to detect and rectify errors in a quantum system. 

Noncommutative rational functions are used to depict the interactions between qubits and error operators, with the aim 

of developing error-correcting codes that are both more efficient and cost-effective, while also being able to withstand 

a range of quantum defects.  
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Fault-tolerant quantum computation is essential for ensuring the appropriate functioning of quantum circuits even in 

the presence of errors. To mitigate the impact of errors on quantum computations, fault-tolerant gates and circuits may be 

developed using noncommutative rational functions. These functions provide a foundation for comprehending how errors 

spread in quantum circuits. 

 

XII. COMPUTATION SYMBOLIC AND ALGEBRAIC GEOMETRY 
 

Algebraic Noncommutative Geometry 

The study of spaces and varieties where the coordinates do not commute is done in algebraic geometry using 

noncommutative rational functions, which opens up new possibilities and generalizes concepts from classical geometry.  

- Noncommutative Varieties: (A generalization of classical algebraic varieties to circumstances where the coordinates 

are noncommutative) Noncommutative rational functions create noncommutative varieties. In the subject of quantum 

geometry, these varieties are examined in relation to model spaces that include noncommutative features, as those seen 

in quantum field theory or string theory. 

- Noncommutative Schemes: Utilizing noncommutative rational functions, noncommutative schemes are defined and 

examined, extending the notion of schemes to the noncommutative context. These schemes are fundamental to the 

comprehension of noncommutative space geometry and to the execution of noncommutative operations like gluing, 

morphisms, and localization.  

The Computation of Symbols  

Noncommutative rational functions are used in symbolic computing to modify and simplify statements containing 

noncommutative variables, which are often seen in complex mathematical and engineering issues.  

- Simplification of Noncommutative Expressions: Manipulating expressions including noncommutative variables, like 

those in control theory, quantum physics, and cryptography, is a common task in symbolic computing. These 

equations may be simplified in an organized way using noncommutative rational functions, which makes them easier 

to understand for  

 

XIII. CONCLUSION 
 

An important development in the domains of system theory, control, optimization, and other related topics is the 

study of noncommutative rational functions. This area of research addresses the complexities introduced when variables do 

not commute, which is a common occurrence in many modern applications such as quantum computing, robust control, 

and formal language theory. It does this by extending classical concepts of rational functions, realization theory, and 

calculus into the noncommutative domain. 

The construction, characteristics, and mathematical foundation required for the analysis of noncommutative 

rational functions have all been examined in this book. We have shown in detail how realization theory and difference-

differential calculus may be used to systematically study these functions, even though they do not have a canonical form 

like their commutative counterparts.  

1. Realization Theory: Noncommutative rational functions may be formally represented in terms of state space models 

using the realization theory. This theory provides a canonical form for noncommutative rational functions by 

extending classical ideas like controllability, observability, and minimality to the noncommutative environment. 

Efficiency and simplicity are critical in system theory and control applications, hence the ability to express these 

functions in a basic state space form is essential. 

2. Calculus of Difference-Differential For noncommutative rational functions, the introduction of difference-differential 

calculus provides strong tools to analyze the evolution of these functions with regard to noncommutative variables. By 

expanding on the traditional concepts of differentiation and finite differences, this calculus allows for the creation of 

sophisticated algorithms for control design, stability analysis, and optimization as well as fresh insights into the 

behavior of noncommutative systems. 

3. Uses: Noncommutative rational functions have a wide range of significant applications. They provide a framework for 

handling complicated uncertainties and creating reliable controllers in system theory and control. They facilitate the 

solution of problems requiring linear matrix inequalities in optimization, and they represent the behavior of automata 

and formal power series in formal language theory. Furthermore, noncommutative rational functions play a crucial 

role in quantum information and computing, helping to create error correction methods and modeling the evolution of 

quantum systems. 

Consequences and Prospective Courses  

This study has important ramifications, especially in areas where noncommutative dynamics are common. This 

study provides a strong mathematical foundation for noncommutative rational functions, which opens up new possibilities 

for the design and analysis of systems with noncommutative cores. In addition to their theoretical depth, the methods and 

tools created here have applications in physics, computer science, and engineering. 
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Looking forward, a number of encouraging avenues for more study become apparent:  

1. Complex Computational Methods: One of the biggest challenges still facing noncommutative rational functions is the 

development of effective computing techniques. The development of algorithms using the difference-differential 

calculus for symbolic computing, optimization, and control design—particularly in high-dimensional noncommutative 

spaces—may be the main emphasis of future research.  

2. Applications in Quantum Computing: Noncommutative rational functions will play a bigger part in modeling quantum 

circuits and error correction codes as quantum computing develops. The design and analysis of quantum algorithms 

might benefit from the use of realization theory and difference-differential calculus in the future, especially in the 

context of fault-tolerant quantum computers. 

3. Algebraic Noncommutative Geometry: This area of study looks into how algebraic geometry and noncommutative 

rational functions are connected. We might get a better idea of how noncommutative spaces are put together if we 

learn more about noncommutative varieties and schemes and how they can be used in quantum geometry and 

mathematical physics.  
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