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ABSTRACT 

 
In this paper, as a new approach arithmetic mean of end points is applied at the error term derivative in the existing 

ONC formulas. The new error terms are also derived by applying the method of precision. This arithmetic mean derivative 

based ONC formulas increase the two orders of precision than the previous ONC formulas and the left out statistical means are 

the scope for future studies in the ONC formulas.   

 

Keywords- ONC formulas, Newton cotes formulas 

 

 

 

I. INTRODUCTION 
 

The definite integral can also be approximated by using another type of Newton-Cotes formulas that are open 

Newton-Cotes quadrature formulas. In the earlier work, Weijiing Zhao and Hongxing Li applied the arithmetic mean of 

end points at the error term derivative and it is included as an additional term to the existing CNC formulas [1]. These 

improved formulas give better results for the approximation of definite integrals. As a continuation of that, the existing 

CNC formulas are modified in the previous chapters by applying the Geometric mean, Heronian mean, Harmonic mean, 

Contra-harmonic mean, Centroidal mean and Root mean square of end points at the error term derivative. These mean 

derivative-based CNC formulas give improved results than the existing results.   

In the ONC formulas, the end points of the interval are excluded in the function evaluation. The general form of 

the ONC quadrature is  

   ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑥𝑛+1

𝑥−1
∑ 𝑤𝑖𝑓𝑛

𝑖=0 (𝓍𝑖)
𝑏

𝑎
               (1.1) 

Where 𝑤𝑖 = (𝑛 + 1) weights 𝑤0, 𝑤1, … , 𝑤𝑛 

𝑥𝑖 = (𝑛 + 1)intermediate points 𝑥0, 𝑥1, … , 𝑥𝑛   

Usually, these weights can be determined in several different ways [2,3,4,5,6]. One of the methods is to derive a 

set of ONC formulas by using Lagrange’s interpolation polynomials.  

If n is even  

 ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑛+1

𝑥−1

𝑏

𝑎
   

  ≈ ∑ 𝑤𝑖𝑓𝑛
𝑖=0 (𝓍𝑖) +

ℎ𝑛+3𝑓(𝑛+2)(𝜉)

(𝑛+2)!
∫ 𝑡2(𝑡 − 1) … (𝑡 − 𝑛)𝑑𝑡,

𝑛+1

−1
       (1.2) 

and if n is odd  

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑛+1

𝑥−1

𝑏

𝑎
   

  ≈ ∑ 𝑤𝑖𝑓𝑛
𝑖=0 (𝓍𝑖) +

ℎ𝑛+2𝑓(𝑛+1)(𝜉)

(𝑛+1)!
∫ 𝑡2(𝑡 − 1) … (𝑡 − 𝑛)𝑑𝑡,

𝑛+1

−1
       (1.3) 

Where ℎ =
𝑏−𝑎

𝑛+2
, 𝜉𝜖(𝑎, 𝑏) 

And 𝑤𝑖 = ∫ ∏
𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗
𝑑𝑥.𝑛

𝑗=0
𝑗≠𝑖

𝑏

𝑎
 

Therefore, the first four ONC formulas for n = 0, 1, 2, 3 are given as follows:  

If n = 0;  

∫ 𝑓(𝑥)𝑑𝑥 = (𝑏 − 𝑎)𝑓 (
𝑎+𝑏

2
) +

(𝑏−𝑎)3

24
𝑓(2)(𝜉),

𝑏

𝑎
  

where 𝜉 𝜖(𝑎, 𝑏) (1.4) 

If n =1;  
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∫ 𝑓(𝑥)𝑑𝑥 =
𝑏−𝑎

2
[𝑓 (

2𝑎+𝑏

3
) + 𝑓 (

𝑎+2𝑏

3
)] +

(𝑏−𝑎)3

36
𝑓(2)(𝜉),

𝑏

𝑎
  

where 𝜉 𝜖(𝑎, 𝑏) (1.5) 

If n=2;  

∫ 𝑓(𝑥)𝑑𝑥 =
𝑏−𝑎

3
[2𝑓 (

3𝑎+𝑏

4
) − 𝑓 (

𝑎+𝑏

2
) + 2𝑓 (

𝑎+3𝑏

4
)] +

14

45
(

𝑏−𝑎5

4
) 𝑓(4)(𝜉),

𝑏

𝑎
  

where 𝜉 𝜖(𝑎, 𝑏) (1.6) 

If n=3; 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑏−𝑎

24
[11𝑓 (

4𝑎+𝑏

5
) + 𝑓 (

3𝑎+2𝑏

5
) + 𝑓 (

2𝑎+3𝑏

5
) + 11𝑓 (

𝑎+4𝑏

5
)]

𝑏

𝑎
   

     +
95

144
(

𝑏−𝑎5

5
) 𝑓(4)(𝜉),  

where 𝜉 𝜖(𝑎, 𝑏) (1.7) 

In the next section, a selective review of the existing development of ONC formulas is described.  

1.1.1 Existing results on ONC formulas  

There are a number of mathematicians who made major contributions to not only the CNC formulas but also to 

the ONC formulas in different dimensions.  

Symplectic integrators   

In 1996, Zhu et al. derived [7] the open Newton-Cotes differential methods from the ONC formulas.  

  ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑦(𝑥)𝑑𝑥 ≈
𝑥𝑛+1

𝑥−1
∑ 𝑎𝑖𝑦

𝑛
𝑖=0 (𝓍𝑖)

𝑏

𝑎
+ (ℎ𝑛+1),                (1.8) 

and converted the above equation into the multilayer symplectic integrators for solving the linear Hamiltonian's equation of 

motion. This integrator has some ambiguous expression in deriving the accuracy and it was resolved by Chiou and Wu [8] 

in 1997. Following them, Vanden Berghe and Van Deale developed the exponentially fitted ONC formulas [9] of order 

two, four and six for solving the Hamiltonian system. In 2011, Simos developed the trigonometrically-fitted NC type 

multilayer symplectic integrators for solving the Schr d̈inger equation [10].  Numerical examples are also demonstrated for 

the effectiveness of the proposed differential methods.  

Fredholm integral  

In 2011, Ibraheem introduced a new method for approximating the linear fredholm integral equation of second 

kind by the ONC formulas [11].  

Improved ONC formulas  

In 2006, Dehghan et al. improved the precision degree of the ONC formulas by considering the integral bounds as 

two additional unknowns [12]. Therefore, the ONC formulas became,  

   ∫ 𝑓(𝑥)𝑑𝑥 =
𝑏−𝑎

𝑛+2
∑ 𝐵𝑘

(𝑛)𝑛
𝑖=0 (𝑎 + (𝑘 + 1)ℎ)

𝑏

𝑎
               (1.9) 

Where, 

𝐵𝑘
(𝑛)

=
(−1)𝑛−𝑘

𝑘!(𝑛−𝑘)!
∫ 𝑡(𝑡 − 1)(𝑡 − 2) … (𝑡 − 𝑘 + 1)(𝑡 − 𝑘 − 1) … (𝑡 − 𝑛)𝑑𝑡,

𝑛+1

−1
     (1.10) 

The new improved integration formulas are more efficient and they increase the order of precision by two than the 

existing ONC formulas. The new error terms are also derived by using the concept of precision. 

In the next section, a survey of derivative-based improvement of ONC formulas is discussed.  

1.1.2 Existing results on ONC-based on Derivatives  

In this section, the derivative-based formulas which include the derivative as an additional parameter for the 

existing ONC formulas are described.  

Derivative-based Midpoint formula  

In 2013, Burg introduced a modified midpoint formula which has the midpoint for the function evaluation and 

endpoints for odd derivatives [13]. The eighth-order midpoint formula can be defined as  

∫ 𝑓(𝑥)𝑑𝑥 = 2ℎ ∫ 𝑓(𝑥2𝑖−1)
𝑛

2
𝑥−1

−
ℎ2

6
(𝑓(1)(𝑎) − 𝑓(1)(𝑏))

𝑏

𝑎
+

7ℎ3

360
(𝑓(1)(𝑎) − 𝑓(1)(𝑏))  

    −
31ℎ6

15120
(𝑓(5)(𝑎) − 𝑓(5)(𝑏)) −

127ℎ8

604800
(𝑏 − 𝑎)𝑓(8)(𝜉),                 

where 𝜉 𝜖(𝑎, 𝑏) (1.11) 

This quadrature formula has two first, third and fifth derivatives and N/2 function evaluations. Also, the method 

of precision is used to derive those derivatives. This improved formula gives accurate results than the existing Midpoint 

formula.  

Derivative-based ONC formulas  

In 2014, Fiza Zafar et al. concentrated on improving the ONC formulas with less number of points and higher 

order of accuracy when compared with the existing ONC formulas. Therefore, they applied the first derivative evaluation 

at all interior points, all points including end points, interior end points and only at end points [14].  Finally, these 

derivatives were included as an additional parameter to the existing ONC formulas and the error terms were derived by 

using the concept of precision. 
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The ONC formulas which used the function evaluation and first derivative of an integrand at all interior points xi ϵ 

(a,b) is defined as  

  ∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑥𝑛+1

𝑥−1
∑ 𝑤𝑖𝑓𝑛

𝑖=0 (𝓍𝑖) + ∑ 𝑢𝑖𝑓′𝑛
𝑖=0 (𝓍𝑖)ℎ,    (1.12) 

The ONC formulas which used the function evaluation of an integrand at all interior points xi ϵ (a,b) and first 

derivative at all points including end points xi ϵ [a,b]  is defined as  

  ∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑥𝑛+1

𝑥−1
∑ 𝑤𝑖𝑓𝑛

𝑖=0 (𝓍𝑖) + ∑ 𝑢𝑖𝑓′𝑛+1
𝑖=−1 (𝓍𝑖)ℎ,       (1.13) 

The ONC formulas which used the function evaluation of an integrand at all interior points xi ϵ (a,b) and first 

derivative at interior end points x0 and xn is defined  as  

  ∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑥𝑛+1

𝑥−1
∑ 𝑤𝑖𝑓𝑛

𝑖=0 (𝓍𝑖) + 𝑐0𝑓′(𝓍0)ℎ − 𝑐1𝑓′(𝓍𝑛)ℎ,  (1.14) 

The ONC formulas which use the function evaluation of an integrand at all interior points xi ϵ (a,b) and first 

derivative at end points and is  defined as  

  ∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑥𝑛+1

𝑥−1
∑ 𝑤𝑖𝑓𝑛

𝑖=0 (𝓍𝑖) + 𝑢0𝑓′(𝓍−1)ℎ − 𝑢1𝑓′(𝓍𝑛+1)ℎ,  (1.14) 

where  𝑤𝑖  = weights for the function  

𝑢𝑖 = weights for the derivative  

  𝑛 = number of subintervals  

Finally, these derivative based ONC formulas produce more accurate numerical results than the existing ONC 

formulas.  

In the next section, as a new approach the arithmetic mean of end points or midpoint is applied at the derivative of 

error term and is included as an additional function to the existing first four ONC formulas. These Open Newton-

Cotes quadrature with midpoint derivative (ONC-MD) formula gives better results than the existing ONC formulas.  

 

II. ONC-MD FORMULAS 
 

A new ONC-MD formula is explained below which gives higher precision than the classical Newton-Cotes 

formulas. The midpoint derivative technique is applied only to the first four ONC formulas for n = 0, 1, 2, 3.  

Theorem 1.1  

The first ONC-MD formula for n = 0 is  

∫ 𝑓(𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎)
𝑏

𝑎
𝑓 (

𝑎+𝑏

2
) + (

(𝑏−𝑎)3

24
) 𝑓(2) (

𝑎+𝑏

2
)    (1.16) 

The precision of this method is 3.  

Proof:  

The formula (1.4) has the degree of precision 1. Now the formula (1.16) is exact for  

𝑓(𝑥) = 𝑥2, 𝑥3  

   The exact value of ∫ 𝑥2𝑑𝑥 =
1

3
(𝑏3 − 𝑎3);

𝑏

𝑎
 

(1.16)⟹ (𝑏 − 𝑎) (
𝑎+𝑏

2
)

2

+
2(𝑏−𝑎)3

24
=

1

3
(𝑏3 − 𝑎3). 

   The exact value of ∫ 𝑥3𝑑𝑥 =
1

4
(𝑏4 − 𝑎4);

𝑏

𝑎
 

(1.16)⟹ (𝑏 − 𝑎) (
𝑎+𝑏

2
)

3

+
6(𝑏−𝑎)3

24
(

𝑎+𝑏

2
) =

1

4
(𝑏4 − 𝑎4). 

Therefore, the precision of the first ONC-MD formula is 3. 

 

Theorem 1.2  

The second ONC-MD formula for n = 1 is  

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎

𝑏−𝑎

2
[𝑓 (

2𝑎+𝑏

3
) + 𝑓 (

𝑎+2𝑏

3
)] + (

(𝑏−𝑎)3

36
) 𝑓(2) (

𝑎+𝑏

2
)   (1.17) 

The precision of this method is 3.  

 

Proof:  

The formula (1.5) has the degree of precision 1. Now the formula (1.16) is exact for  

𝑓(𝑥) = 𝑥2, 𝑥3  

The exact value of ∫ 𝑥2𝑑𝑥 =
1

3
(𝑏3 − 𝑎3);

𝑏

𝑎
 

(1.17)⟹ (
𝑏−𝑎

2
) [(

2𝑎+𝑏

3
)

2

+ (
𝑎+2𝑏

3
)

2

] +
2(𝑏−𝑎)3

36
=

1

3
(𝑏3 − 𝑎3). 

   The exact value of ∫ 𝑥3𝑑𝑥 =
1

4
(𝑏4 − 𝑎4);

𝑏

𝑎
 

(1.16)⟹ (
𝑏−𝑎

2
) [(

2𝑎+𝑏

3
)

3

+ (
𝑎+2𝑏

3
)

3

] +
6(𝑏−𝑎)3

36
(

𝑎+𝑏

2
) 
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 =
1

4
(𝑏4 − 𝑎4). 

Therefore, the precision of the second ONC-MD formula is 3.  

Theorem 1.3  

The third ONC-MD formula for n = 2 is  

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎

𝑏−𝑎

3
[2𝑓 (

3𝑎+𝑏

4
) − 𝑓 (

𝑎+𝑏

2
) + 2𝑓 (

𝑎+3𝑏

4
)] +

14

45
(

(𝑏−𝑎)5

4
) 𝑓(4) (

𝑎+𝑏

2
)  (1.18) 

The precision of this method is 5.  

Proof:  

The formula (1.6) has the degree of precision 1. Now the formula (1.18) is exact for  

𝑓(𝑥) = 𝑥4, 𝑥5  

   The exact value of ∫ 𝑥4𝑑𝑥 =
1

5
(𝑏5 − 𝑎5);

𝑏

𝑎
 

(1.18)⟹ (
𝑏−𝑎

3
) [2 (

3𝑎+𝑏

4
)

4

− (
𝑎+𝑏

2
)

4

+ 2 (
𝑎+3𝑏

4
)

4

] +
336

45
(

𝑏−𝑎

4
)

5

 

 =
1

5
(𝑏5 − 𝑎5). 

   The exact value of ∫ 𝑥5𝑑𝑥 =
1

6
(𝑏6 − 𝑎6);

𝑏

𝑎
 

(1.18)⟹ (
𝑏−𝑎

3
) [2 (

3𝑎+𝑏

4
)

5

− (
𝑎+𝑏

2
)

5

+ 2 (
𝑎+3𝑏

4
)

5

] +
1680

45
(

𝑏−𝑎

4
)

5

(
𝑎+𝑏

2
) 

 =
1

6
(𝑏6 − 𝑎6). 

Therefore, the precision of the third ONC-MD formula is 5.  

Theorem 1.4  

The fourth ONC-MD formula for n = 3 is  

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎

𝑏−𝑎

24
[11𝑓 (

4𝑎+𝑏

5
) + 𝑓 (

3𝑎+2𝑏

5
) + 𝑓 (

2𝑎+3𝑏

5
) + 11𝑓 (

𝑎+4𝑏

5
)] +

95

144
(

(𝑏−𝑎)5

4
) 𝑓(4) (

𝑎+𝑏

2
)  (1.19) 

The precision of this method is 5.  

Proof:  

The formula (1.7) has the degree of precision 3. Now the formula (1.19) is exact for  

𝑓(𝑥) = 𝑥4, 𝑥5  

   The exact value of ∫ 𝑥4𝑑𝑥 =
1

5
(𝑏5 − 𝑎5);

𝑏

𝑎
 

(1.19)⟹ (
𝑏−𝑎

24
) [11 (

4𝑎+𝑏

5
)

4

+ (
3𝑎+2𝑏

5
)

4

+ (
2𝑎+3𝑏

5
)

4

+ 11 (
𝑎+4𝑏

5
)

4

] +
2280

144
(

𝑏−𝑎

5
)

5

 

 =
1

5
(𝑏5 − 𝑎5). 

   The exact value of ∫ 𝑥5𝑑𝑥 =
1

6
(𝑏6 − 𝑎6);

𝑏

𝑎
 

(5.19)⟹ (
𝑏−𝑎

24
) [11 (

4𝑎+𝑏

5
)

5

+ (
3𝑎+2𝑏

5
)

5

+ (
2𝑎+3𝑏

5
)

5

+ 11 (
𝑎+4𝑏

5
)

5

] 

     +
11400

144
(

𝑏−𝑎

5
)

5

(
𝑎+𝑏

2
) =

1

6
(𝑏6 − 𝑎6). 

Therefore, the precision of the fourth ONC-MD formula is 5. 

 

III. THE ERROR TERMS OF ONC-MD FORMULAS 
 

The Error terms of ONC - MD formulas are given below. These Error terms are  obtained by using the difference 

between the exact value and the quadrature formulas  for the monomial 
𝑥𝑝+1

(𝑝+1)!
 .  

Theorem 1.5  

The error term of first ONC - MD formula for n = 0 is  

∫ 𝑓(𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎)
𝑏

𝑎
𝑓 (

𝑎+𝑏

2
) + (

(𝑏−𝑎)3

24
) 𝑓(2) (

𝑎+𝑏

2
) +

(𝑏−𝑎)5

1920
𝑓(4)(𝜉),         (1.20) 

where 𝜉 𝜖 (a, b). This is the fourth order accurate with the error term  

   𝐸25[𝑓] = −
(𝑏−𝑎)5

1920
𝑓(4)(𝜉).  

Proof:  

The exact value of 
1

4!
∫ 𝑥4𝑑𝑥

𝑏

𝑎
=

1

120
(𝑏5 − 𝑎5); 

 (𝑏 − 𝑎)𝑓 (
𝑎+𝑏

2
) + (

(𝑏−𝑎)3

24
) 𝑓(2) (

𝑎+𝑏

2
) 

 =
𝑏−𝑎

4! .16
(3𝑎4 + 4𝑎3𝑏 + 2𝑎2𝑏2 + 4𝑎𝑏3 + 3𝑏4), 

Therefore,  
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  𝐸25[𝑓] = −
1

120
(𝑏5 − 𝑎5) −

𝑏−𝑎

4! .16
(3𝑎4 + 4𝑎3𝑏 + 2𝑎2𝑏2 + 4𝑎𝑏3 + 3𝑏4)  

   =
(𝑏−𝑎)5

1920
.  

Therefore, the error term is  

   𝐸25[𝑓] =
(𝑏−𝑎)5

1920
𝑓(4)(𝜉).  

Theorem 1.6  

The error term of the second ONC-MD formula for n = 1is  

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎

𝑏−𝑎

2
[𝑓 (

2𝑎+𝑏

3
) + 𝑓 (

𝑎+2𝑏

3
)] +

(𝑏−𝑎)3

36
𝑓(2) (

𝑎+𝑏

2
)  +

19(𝑏−𝑎)5

38880
𝑓(4)(𝜉),         (1.21) 

where 𝜉 𝜖 (a, b). This is the fourth order accurate with the error term  

   𝐸26[𝑓] = −
19(𝑏−𝑎)5

38880
𝑓(4)(𝜉).  

Proof:  

The exact value of 
1

4!
∫ 𝑥4𝑑𝑥

𝑏

𝑎
=

1

120
(𝑏5 − 𝑎5); 

𝑏−𝑎

2
[𝑓 (

2𝑎+𝑏

3
) + 𝑓 (

𝑎+2𝑏

3
)] +

(𝑏−𝑎)3

36
𝑓(2) (

𝑎+𝑏

2
)  

 =
𝑏−𝑎

7776
(61𝑎4 + 80𝑎3𝑏 + 42𝑎2𝑏2 + 80𝑎𝑏3 + 61𝑏4), 

Therefore,  

  𝐸26[𝑓] =
1

120
(𝑏5 − 𝑎5) −

𝑏−𝑎

7776
(61𝑎4 + 80𝑎3𝑏 + 42𝑎2𝑏2 + 80𝑎𝑏3 + 61𝑏4)  

   =
19(𝑏−𝑎)5

38880
.  

Therefore, the error term is  

   𝐸26[𝑓] =
19(𝑏−𝑎)5

38880
𝑓(4)(𝜉).  

 

Theorem 1.7  

The error term of the third ONC-MD formula for n = 2 is  

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎

𝑏−𝑎

3
[2𝑓 (

3𝑎+𝑏

4
) − 𝑓 (

𝑎+𝑏

2
) + 2𝑓 (

𝑎+3𝑏

4
)] +

14

45
(

𝑏−𝑎

4
)

5

𝑓(4) (
𝑎+𝑏

2
) +

41(𝑏−𝑎)7

15482880
𝑓(6)(𝜉),         (1.22) 

where 𝜉 𝜖 (a, b). This is the fourth order accurate with the error term  

   𝐸27[𝑓] =
41(𝑏−𝑎)5

15482880
𝑓(6)(𝜉).  

Proof:  

The exact value of 
1

6!
∫ 𝑥6𝑑𝑥

𝑏

𝑎
=

1

5040
(𝑏7 − 𝑎7); 

𝑏−𝑎

3
[2𝑓 (

3𝑎+𝑏

4
) − 𝑓 (

𝑎+𝑏

2
) + 2𝑓 (

𝑎+3𝑏

4
)] +

14

45
(

𝑏−𝑎

4
)

5

𝑓(4) (
𝑎+𝑏

2
)   

 =
𝑏−𝑎

3072.6!
(4336𝑎6 + 474𝑎5𝑏 + 351𝑎2𝑏2 + 556𝑎3𝑏3

+351𝑎2𝑏4 + 474𝑎𝑏5 + 433𝑏6 ), 

Therefore,  

  𝐸27[𝑓] =
(𝑏7−𝑎7)

5040
−

𝑏−𝑎

3072.6!
(4336𝑎6 + 474𝑎5𝑏 + 351𝑎2𝑏2 + 556𝑎3𝑏3

+351𝑎2𝑏4 + 474𝑎𝑏5 + 433𝑏6 )  

   =
41(𝑏−𝑎)7

15482880
.  

Therefore, the error term is  

   𝐸27[𝑓] =
41(𝑏−𝑎)7

15482880
𝑓(6)(𝜉).  

Theorem 1.8  

The error term of the fourth ONC-MD formula for n = 3 is  

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎

𝑏−𝑎

24
[11𝑓 (

4𝑎+𝑏

5
) + 𝑓 (

3𝑎+2𝑏

5
) + 𝑓 (

2𝑎+3𝑏

5
) + 11𝑓 (

𝑎+4𝑏

5
)] +

95

144
(

𝑏−𝑎

5
)

5

𝑓(4) (
𝑎+𝑏

2
) +

821(𝑏−𝑎)7

168.55.6!
𝑓(6)(𝜉), (1.23) 

where 𝜉 𝜖 (a, b). This is the fourth order accurate with the error term  

   𝐸28[𝑓] =
821(𝑏−𝑎)7

168.55.6!
𝑓(6)(𝜉).  

Proof:  

The exact value of 
1

6!
∫ 𝑥6𝑑𝑥

𝑏

𝑎
=

1

5040
(𝑏7 − 𝑎7); 

𝑏−𝑎

24
[11𝑓 (

4𝑎+𝑏

5
) + 𝑓 (

3𝑎+2𝑏

5
) + 𝑓 (

2𝑎+3𝑏

5
) + 11𝑓 (

𝑎+4𝑏

5
)] +

95

144
(

𝑏−𝑎

5
)

5

𝑓(4) (
𝑎+𝑏

2
)   

 =
𝑏−𝑎

375000.6!
(52985𝑎6 + 57090𝑎5𝑏 + 44775𝑎4𝑏2 + 65300𝑎3𝑏3

+44775𝑎2𝑏4 + 57090𝑎𝑏5 + 52985𝑏6 ), 

Therefore,  
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  𝐸28[𝑓] =
(𝑏7−𝑎7)

5040
−

𝑏−𝑎

375000.6!
(52985𝑎6 + 57090𝑎5𝑏 + 44775𝑎4𝑏2 + 65300𝑎3𝑏3

+44775𝑎2𝑏4 + 57090𝑎𝑏5 + 52985𝑏6 )  

   =
821(𝑏−𝑎)7

168.55.6!
.  

Therefore, the error term is  

   𝐸28[𝑓] =
821(𝑏−𝑎)7

168.55.6!
𝑓(6)(𝜉).  

 

IV. SUMMARY 
 

The following Table 1.1 gives a summary of precision, the order and the error terms of the existing ONC formulas 

and the Midpoint derivative-based ONC formulas. 

 

Table 1.1: The Error terms of ONC and ONC-MD formulas 

Formulas ONC ONC-MD 

Precision Order Error terms Precision Order Error terms 

n = 0 1 3 (𝑏−𝑎)3

24
𝑓(2)(𝜉)  3 5 (𝑏−𝑎)5

1920
𝑓(4)(𝜉)  

n = 1 1 3 (𝑏−𝑎)3

36
𝑓(2)(𝜉)  3 5 19(𝑏−𝑎)5

38880
𝑓(4)(𝜉)  

n = 2 3 5 14

45
(

𝑏−𝑎

4
)

5

𝑓(4)(𝜉)  
5 7 41(𝑏−𝑎)7

15482880
𝑓(6)(𝜉)  

n = 3 3 5 95

144
(

𝑏−𝑎

5
)

5

𝑓(4)(𝜉)  
5 7 821(𝑏−𝑎)7

168.55.6!
𝑓(6)(𝜉)  

 

The comparison indicates that the proposed midpoint derivative-based ONC formulas increase the two orders of 

precision than the existing formulas. 

 

V. NUMERICAL EXAMPLES 
 

An approximate value of the following examples using the ONC-MD formulas is determined and presented. To 

demonstrate the accuracy of the results, we evaluate the examples 1.1 – 1.3 and the comparison of results is shown in 

Tables 1.2 – 1.4.  

Example 1.1  

Solve ∫ 𝑒𝑥𝑑𝑥
2

0    and compare the solutions with the ONC and ONC-MD formulas.  

Solution:  

The exact value of ∫ 𝑒𝑥𝑑𝑥
2

0
 = 6.389056989. 

 

Table 1.2: Comparison of ONC and ONC-MD formulas - Example 1.1 

Formulas ONC ONC-MD 

Approximate Value Error Approximate Value Error 

n = 0 5.436563657 0.952492441 6.342657600 0.046398498 

n = 1 5.741401936 0.647654162 6.345464564 0.043515340 

n = 2 6.361692569 0.027363529 6.388120309 0.000935789 

n = 3 6.369923849 0.019132249 6.388287352 0.000768746 

Example 1.2  

Solve ∫
𝑑𝑥

1+𝑥

1

0  and compare the solutions with the ONC and ONC-MD formulas.  
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Solution:  

The exact value of ∫
𝑑𝑥

1+𝑥

1

0
 = 0.69314718. 

 

Table 1.3: Comparison of ONC and ONC-MD formulas - Example 1.2 

Formulas ONC ONC-MD 

Approximate Value Error Approximate Value Error 

n = 0 0.666666666 0.026480520 0.691358018 0.001789162 

n = 1 0.675000000 0.018147180 0.691460905 0.001686275 

n = 2 0.692063492 0.001083688 0.693023711 0.000123469 

n = 3 0.692377645 0.000769535 0.693044860 0.000102320 

 

Example 1.3  

Solve ∫ (1 + 𝑥4)𝑑𝑥
1

0  and compare the solutions with the ONC and ONC-MD formulas.  

Solution:  

The exact value of ∫ (1 + 𝑥4)𝑑𝑥
1

0
 = 1.2.   

 

Table 1.4: Comparison of ONC and ONC-MD formulas - Example 1.3 

Formulas ONC ONC - MD 

Approximate Value Error Approximate Value Error 

n = 0 1.062500000 0.137500000 1.187500000 0.012500000 

n = 1 1.104938272 0.095061728 1.188271605 0.011728395 

n = 2 1.192708333 0.007291666 1.200000000 0.000000000 

n = 3 1.194933333 0.005066666 1.200000000 0.000000000 

 

VI. CONCLUSION 
 

In this paper, as a first approach only the arithmetic mean of end points is applied at the derivative of error term to 

improve the accuracy of the existing ONC formulas. The remaining statistical means are left for future scope. From the 

results presented in Tables 1.2 - 1.4, it is observed that the ONC-MD formulas give more accuracy than the standard ONC. 
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