Article Review: Relationship between Toxoplasmosis and other Diseases
DOI:
https://doi.org/10.55544/sjmars.3.4.1Keywords:
climate change, recursive, water security, water management, povertyAbstract
Water provision is sensitive to climate change, and agricultural production and food supply are sensitive to water availability. Water scarcity affects food security and agricultural economic development through changes in agricultural production and changes in the composition of produced goods. Recent droughts also led to a decrease in the volume of water allocated to agriculture, which led to a decrease in total agricultural production and exports, and this has subsequent impacts on food security and economic development. The research aimed to measure the impact of water scarcity on agricultural economic development for the period 1990-2022. The research included three behavioral equations with three endogenous variables: the cultivated area, the value of agricultural output, and the value of gross domestic product, and four exogenous variables: the amount of available water, agricultural labor, and the value of agricultural investments and the income of other sectors, the studied model is called the sequential model, which was estimated using the Recursive method, using the ordinary least squares (OLS) method. The results indicated that increasing the amount of available water will lead to an increase in the cultivated areas by 141,129.2 dunums, and that increasing one thousand dunums of the cultivated area will increase agricultural output by 0.00821, and that agricultural labor is inversely proportional to agricultural output. It became clear that if the income of the rest of the sectors increased by one unit, the domestic product would increase by 0.1873. Water scarcity will reduce cultivated areas, which in turn will decrease agricultural output, causing the value of agricultural output to decrease and its contribution to the gross domestic product to decrease. In turn, it will have serious repercussions on agricultural economic development. Therefore, the research recommends the necessity of integrated water management and improving the efficiency of its use, as well as the application of modern technologies in agriculture, such as sprinkler irrigation, hydroponics, and redrawing crop compositions to ensure maximizing the net return per unit of water.
References
Robert-Gangneux F., Darde M. L. (2012). Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296. 10.1128/CMR.05013-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Montoya J. G., Liesenfeld O. (2004). Toxoplasmosis. Lancet 363, 1965–1976. 10.1016/S0140-6736(04)16412-X [PubMed] [CrossRef] [Google Scholar]
Meireles L. R., Ekman C. C., de Andrade H. F., Jr., Luna E. J. (2015). Human toxoplasmosis outbreaks and the agent infecting form. Findings from a systematic review. Rev. Inst. Med. Trop. Sao. Paulo. 57, 369–376. 10.1590/S0036-46652015000500001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Chehrazi-Raffle A., Luu M., Yu Z., Liou F., Kittleson M., Hamilton M., et al. . (2015). Toxoplasma gondii serology and outcomes after heart transplantation: contention in the literature. Transplant. Proc. 47, 1949–1953. 10.1016/j.transproceed.2015.06.022 [PubMed] [CrossRef] [Google Scholar]
Chehrazi-Raffle A., Luu M., Yu Z., Liou F., Kittleson M., Hamilton M., et al. . (2015). Toxoplasma gondii serology and outcomes after heart transplantation: contention in the literature. Transplant. Proc. 47, 1949–1953. 10.1016/j.transproceed.2015.06.022 [PubMed] [CrossRef] [Google Scholar]
Gajurel K., Dhakal R., Montoya J. G. (2015). Toxoplasma prophylaxis in haematopoietic cell transplant recipients: a review of the literature and recommendations. Curr. Opin. Infect. Dis. 28, 283–292. 10.1097/QCO.0000000000000169 [PubMed] [CrossRef] [Google Scholar]
Wei Cong, Guo-Hua Liu, Qing-Feng Meng, et al. Toxoplasma gondii infection in cancer patients: prevalence, risk factors, genotypes and association with clinical diagnosis. 2015 Apr 10;359(2):307-13. doi: 10.1016/j.canlet.2015.01.036.
Ben-Harari R.R., Connolly M.P. High burden and low awareness of toxoplasmosis in the United States. Postgrad. Med. 2019;131:103–108. doi: 10.1080/00325481.2019.1568792. [PubMed] [CrossRef] [Google Scholar]
Mendez O.A., Koshy A.A. Toxoplasma gondii: Entry, association, and physiological influence on the central nervous system. PLoS Pathog. 2017;13:e1006351. doi: 10.1371/journal.ppat.1006351. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Yamamoto L., Targa L.S., Sumita L.M., Shimokawa P.T., Rodrigues J.C., Kanunfre K.A., Okay T.S. Association of Parasite Load Levels in Amniotic Fluid With Clinical Outcome in Congenital Toxoplasmosis. Obstet. Gynecol. 2017;130:335–345. doi: 10.1097/AOG.0000000000002131. [PubMed] [CrossRef] [Google Scholar]
Weiss L.M., Dubey J.P. Toxoplasmosis: A history of clinical observations. Int. J. Parasitol. 2009;39:895–901. doi: 10.1016/j.ijpara.2009.02.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Delhaes L., Ajzenberg D., Sicot B., Bourgeot P., Dardé M.-U., Dei-Cas E., Houfflin-Debarge V. Severe congenital toxoplasmosis due to a Toxoplasma gondii strain with an atypical genotype: Case report and review. Prenat. Diagn. 2010;30:902–905. doi: 10.1002/pd.2563. [PubMed] [CrossRef] [Google Scholar]
Delair E., Latkany P., Noble A.G., Rabiah P., McLeod R., Brezin A. Clinical manifestations of ocular toxoplasmosis. Ocul. Immunol. Inflamm. 2011;19:91–102. doi: 10.3109/09273948.2011.564068. [PubMed] [CrossRef] [Google Scholar]
Sauer A., Rochet E., Lahmar I., Brunet J., Sabou M., Bourcier T., Candolfi E., Pfaff A.W. The local immune response to intraocular Toxoplasma re-challenge: Less pathology and better parasite control through Treg/Th1/Th2 induction. Int. J. Parasitol. 2013;43:721–728. doi: 10.1016/j.ijpara.2013.04.004. [PubMed] [CrossRef] [Google Scholar]
Matta S.K., Rinkenberger N., Dunay I.R., Sibley L.D. Toxoplasma gondii infection and its implications within the central nervous system. Nat. Rev. Microbiol. 2021;19:467 480. doi: 10.1038/s41579-021-00518-7. [PubMed] [CrossRef] [Google Scholar]
Gharamti A.A., Rao A., Pecen P.E., Henao-Martínez A.F., Franco-Paredes C., Montoya J.G. Acute Toxoplasma Dissemination With Encephalitis in the Era of Biological Therapies. Open Forum. Infect. Dis. 2018;5:256–259. doi: 10.1093/ofid/ofy259. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Bannoura S., El Hajj R., Khalifeh I., El Hajj H. Acute disseminated encephalomyelitis and reactivation of cerebral toxoplasmosis in a child: Case report. IDCases. 2018;13:e00434. doi: 10.1016/j.idcr.2018.e00434. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Rajapakse S., Weeratunga P., Rodrigo C., Lakshitha de Silva N., Fernando S.D. Prophylaxis of human toxoplasmosis: A systematic review. Pathog. Glob. Health. 2017;111:333–342. doi: 10.1080/20477724.2017.1370528. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
La Hoz R.M., Morris M.I. Infectious Diseases Community of Practice of the American Society of, Tissue and blood protozoa including toxoplasmosis, Chagas disease, leishmaniasis, Babesia, Acanthamoeba, Balamuthia, and Naegleria in solid organ transplant recipients-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019;33:e13546. [PubMed] [Google Scholar]
Adekunle R.O., Sherman A., Spicer J.O., Messina J.A., Steinbrink J.M., Sexton M.E., Lyon G.M., Mehta A.K., Phadke V.K., Woodworth M.H. Clinical characteristics and outcomes of toxoplasmosis among transplant recipients at two US academic medical centers. Transpl. Infect Dis. 2021;23:e13636. doi: 10.1111/tid.13636. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Madireddy S., Rivas Chacon E.D., Mangat R. Toxoplasmosis, in StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2020. [Google Scholar]
Ngo H.M., Zhou Y., Lorenzi H., Wang K., Kim T.K., Zhou Y., El Bissati K., Mui E., Fraczek L., Rajagopala S.V., et al. Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration and Cancer. Sci. Rep. 2017;7:11496. doi: 10.1038/s41598-017-10675-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Saberi R., Sharif M., Sarvi S., Aghayan S.A., Hosseini S.A., Anvari D., Chegeni T.N., Hosseininejad Z., Daryani A. Is Toxoplasma gondii playing a positive role in multiple sclerosis risk? A systematic review and meta-analysis. J. Neuroimmunol. 2018;322:57–62. doi: 10.1016/j.jneuroim.2018.06.011. [PubMed] [CrossRef] [Google Scholar]
Yazar S., Arman F., Yalçin S., Demirtaş F., Yaman O., Sahin I. Investigation of probable relationship between Toxoplasma gondii and cryptogenic epilepsy. Seizure. 2003;12:107–109. doi: 10.1016/S1059-1311(02)00256-X. [PubMed] [CrossRef] [Google Scholar]
Stommel E.W., Seguin R., Thadani V.M., Schwartzman J.D., Gilbert K., Ryan K.A., Tosteson T.D., Kasper L.H. Cryptogenic Epilepsy: An. Infectious Etiology? Epilepsia. 2001;42:436–438. doi: 10.1046/j.1528-1157.2001.25500.x. [PubMed] [CrossRef] [Google Scholar]
Sadeghi M., Riahi S.M., Mohammadi M., Saber V., Aghamolaie S., Moghaddam S.A., Aghaei S., Javanian M., Gamble H.R., Rostami A. An updated meta-analysis of the association between Toxoplasma gondii infection and risk of epilepsy. Trans. R. Soc. Trop Med. Hyg. 2019;113:453–462. doi: 10.1093/trstmh/trz025. [PubMed] [CrossRef] [Google Scholar]
Bayani M., Riahi S.M., Bazrafshan N., Gamble H.R., Rostami A. Toxoplasma gondii infection and risk of Parkinson and Alzheimer diseases: A systematic review and meta-analysis on observational studies. Acta Trop. 2019;196:165–171. doi: 10.1016/j.actatropica.2019.05.015. [PubMed] [CrossRef] [Google Scholar]
Tong W.H., Pavey C., O’Handley R., Vyas A. Behavioral biology of Toxoplasma gondii infection. Parasit. Vectors. 2021;14:77. doi: 10.1186/s13071-020-04528-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Severance E.G., Xiao J., Jones-Brando L., Sabunciyan S., Li Y., Pletnikov M., Prandovszky E., Yolken R. Toxoplasma gondii-A Gastrointestinal Pathogen Associated with Human Brain Diseases. Int. Rev. Neurobiol. 2016;131:143–163. [PMC free article] [PubMed] [Google Scholar]
Wang Z.T., Harmon S., O’Malley K.L., Sibley D.L. Reassessment of the role of aromatic amino acid hydroxylases and the effect of infection by Toxoplasma gondii on host dopamine. Infect Immun. 2015;83:1039–1047. doi: 10.1128/IAI.02465-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Murakami Y., Hoshi M., Hara A., Takemura M., Arioka Y., Yamamoto Y., Matsunami H., Funato T., Seishima M., Saito K. Inhibition of increased indoleamine 2,3-dioxygenase activity attenuates Toxoplasma gondii replication in the lung during acute infection. Cytokine. 2012;59:245–251. doi: 10.1016/j.cyto.2012.04.022. [PubMed] [CrossRef] [Google Scholar]
Mahmoud M.E., Fereig R., Nishikawa Y. Involvement of Host Defense Mechanisms against Toxoplasma gondii Infection in Anhedonic and Despair-Like Behaviors in Mice. Infect. Immun. 2017;85:e00007–e00017. doi: 10.1128/IAI.00007-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Webster J.P., McConkey G.A. Toxoplasma gondii-altered host behaviour: Clues as to mechanism of action. Folia. Parasitol. (Praha) 2010;57:95–104. doi: 10.14411/fp.2010.012. [PubMed] [CrossRef] [Google Scholar]
Akaltun İ., Kara S.S., Kara T. The relationship between Toxoplasma gondii IgG antibodies and generalized anxiety disorder and obsessive-compulsive disorder in children and adolescents: A new approach. Nord. J. Psychiatry. 2018;72:57–62. doi: 10.1080/08039488.2017.1385850. [PubMed] [CrossRef] [Google Scholar]
M. Vogel, C. Schwarze-Zander, J.-C. Wasmuth, U. Spengler, T. Sauerbruch, and J. K. Rockstroh, “The treatment of patients with HIV,” Deutsches Ärzteblatt International, vol. 107, no. 28-29, pp. 507–516, 2010.View at: Publisher Site | Google Scholar
Calderaro, S. Peruzzi, G. Piccolo et al., “Laboratory diagnosis of Toxoplasma gondii infection,” International Journal of Medical Sciences, vol. 6, no. 3, pp. 135-136, 2009.View at: Publisher Site | Google Scholar
W. L. Homan, M. Vercammen, J. De Braekeleer, and H. Verschueren, “Identification of 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR1,” International Journal for Parasitology, vol. 30, no. 1, pp. 69–75, 2000.View at: Publisher Site | Google Scholar
188. Lee D.H., Kim A.R., Lee S.H., Quan F.S. Cross-protection induced by Toxoplasma gondii virus-like particle vaccine upon intraperitoneal route challenge. Acta Trop. 2016;164:77–83. doi: 10.1016/j.actatropica.2016.08.025. [PubMed] [CrossRef] [Google Scholar]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Stallion Journal for Multidisciplinary Associated Research Studies
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.