A Comprehensive Review on Anti-Cancer Properties of Oxalis corniculata
DOI:
https://doi.org/10.55544/sjmars.3.3.7Keywords:
anti-oxidant, anti-cancer, anti-inflammatory, neuroprotective effect, Flavonoid, glycoside, phenolic compoundAbstract
Oxalis corniculata L. belongs to the Family (Oxalidaceae), commonly known as “creeping woodsorrel, procumbent yellow sorrel, or sleeping beauty, " a common name. Oxalis corniculate contains several compounds like β-sitosterol, betulin, 4-hydroxybenzoic acid, ethyl gallate, methoxyflavones, apigenin, and 7-O-β-D-glucopyranoside were previously isolated from the whole plant of Oxalis corniculata. linn. The review reveals that wide ranges of phytochemical constituents have been isolated from the plant like flavonoids, tannins, phytosterols, phenol, glycosides, fatty acids, galactose-glycerolipid, and volatile oil. The leaves contain flavonoids, iso vitexin, and vitexin-2”- O- beta – D- glucopyranose. It is a rich source of essential fatty acids like palmitic, oleic, linoleic, linolenic, and stearic acids. It has been reported that the plant contains anti-inflammatory, anxiolytic, anticonvulsant, antifungal, antiulcer, antinociceptive, anticancer, antidiabetic, hepatoprotective, hypolipidemic, abortifacient, antimicrobial, and wound healing properties.
References
Anil Kumar K. Kuntal Das, Manan Joshipura and Nishith Mandal. Oxalis corniculata Linn. The Plant of Indian subtropics. Herbal Tech Industry, 2010:7-11
Sarfraz I, Rasul A, Hussain G, Shah MA, Nageen B, Jabeen F, Selamoğlu Z, Uçak İ, Asrar M, Adem S (2022) A review on phyto-pharmacology of Oxalis corniculata. Comb Chem High Throughput Screen 25(7):1181–1186
Srikanth Merugu, Swetha Tadigotla, B Veeresh. Phytochemistry and pharmacology of oxalis corniculata linn- a review International Journal of Pharmaceutical Sciences & research Vol. 3(11): 4077-4085.
Gudsi Sachin, Garge Shankar, Koli Rahul, & Patil Kalpana, Antioxidant properties and cytotoxic effects of Oxalis corniculata on human Hepatocarcinoma (Hep-G2) cell line: an in vitro and silico evaluation, Future Journal of Pharmaceutical Sciences volume 9, Article number: 25 (2023).
https://keys.lucidcentral.org/demo/js_player/sew2/text/oxalis_corniculata.htm.
Badwaik H, Singh MK, Thakur D. The Botany, Chemistry, Pharmacological and Therapeutic Application of Oxalis corniculata Linn. - a review. International Journal of Phytomedicine. 2011; 3:01-08
Hall DW, Vernon VV, Brent A. Sellers. Creeping Wood Sorrel, Oxalis corniculata L. Southern Yellow Wood Sorrel, Oxalis florida Salisb. SP 37, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida,1996, 01-02.
Saha S. Oxalis corniculata Linn. (Amrul): Magical plant. American International Journal of Research in Formal, Applied & natural sciences. 2017; 18(1):16-19.
Mary Z, Vasantha KKG, Pasupathy S, Bikshapathi T. Pharmacognostical studies on changeri Oxalis corniculata Linn. (Oxalidaceae): Ancient Science of Life 2001; 21(2):1-8.
E Joseph. ND Pizzorno, Herb Joiner-Bey ND, in The Clinician's Handbook of Natural Medicine (Third Edition), 2016.
Saeidnia Soodabeh, Manayi Azadeh, R. Gohar Ahmad, Abdollahi Mohammad, The Story 0of Beta-sitosterol- A Review European Journal of Medicinal Plants. 2014 - Volume 4 [Issue 5]
Bin Sayeed, M. S. & Ameen, S. S. Beta-Sitosterol: A Promising but Orphan Nutraceutical to Fight Against Cancer. Nutr. Cancer 67, 1216–22 (2015).
Moon, D. O., Kim, M. O., Choi, Y. H. & Kim, G. Y. β-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett. 264, 181–191 (2008)
Bradford, P. G. & Awad, A. B. Modulation of signal transduction in cancer cells by phytosterols. BioFactors 36, 241–247 (2010).
Awad, aB., Chinnam, M., Fink, C. S. & Bradford, P. G. beta-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine 14, 747–754 (2007).
Baskar, A. A., Ignacimuthu, S., Paulraj, G. M. & Al Numair, K. S. Chemopreventive potential of beta-Sitosterol in experimental colon cancer model–an in vitro and In vivo study. BMC Complement. Altern. Med. 10, 24 (2010).
Jourdain, C., Tenca, G., Deguercy, A., Troplin, P. & Poelman, D. In-vitro effects of polyphenols from cocoa and beta-sitosterol on the growth of human prostate cancer and normal cells. Eur. J. Cancer Prev. 15, 353–361 (2006).
Jourdain, C., Tenca, G., Deguercy, A., Troplin, P. & Poelman, D. In-vitro effects of polyphenols from cocoa and beta-sitosterol on the growth of human prostate cancer and normal cells. Eur. J. Cancer Prev. 15, 353–361 (2006).
Zhao, Y., Chang, S. K. C., Qu, G., Li, T. & Cui, H. Beta-sitosterol inhibits cell growth and induces apoptosis in SGC-7901 human stomach cancer cells. J. Agric. Food Chem. 57, 5211–8 (2009).
Xu, T.; Pang, Q.; Zhou, D.; Zhang, A.; Luo, S.; Wang, Y.; Yan, X. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells. PLoS ONE 2014 ,9, e105768. [CrossRef] [PubMed]
Tan, Y.; Yu, R.; Pezzuto, J.M. Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation. Clin. Cancer Res. 2003,9, 2866–2875. [PubMed]
Alakurtti, S.; Mäkelä, T.; Koskimies, S.; Yli-Kauhaluoma, J. Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci. 2006,29, 1–13.
Y. Zheng, P. Liu, N. Wang, S. Wang, B. Yang, M. Li, J. Chen, H. Situ, M. Xie, Y. Lin, Z. Wang Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway Oxid. Med Cell Longev., 2019 (2019), Article 8781690, 10.1155/2019/8781690
T.I. Hsu, M.C. Wang, S.Y. Chen, S.T. Huang, Y.M. Yeh, W.C. Su, W.C. Chang, J.J. Hung Betulinic Acid Decreases Specificity Protein 1 (Sp1) Level via Increasing the Sumoylation of Sp1 to Inhibit Lung Cancer Growth Mol. Pharm., 82 (2012), pp. 1115-1128, 10.1124/mol.112.078485
X. Liu, I. Jutooru, P. Lei, K. Kim, S.O. Lee, L.K. Brents, P.L. Prather, S. Safe Betulinic acid targets YY1 and ErbB2 through cannabinoid receptor-dependent disruption of microRNA-27a:ZBTB10 in breast cancer Mol. Cancer Ther., 11 (2012), pp. 1421-1431, 10.1158/1535-7163
Cai, Y. Zheng, J. Gu, S. Wang, N. Wang, B. Yang, F. Zhang, D. Wang, W. Fu, Z. WangBetulinic acid chemosensitizes breast cancer by triggering ER stress -mediated apoptosis by directly targeting GRP78 Cell Death Dis., 9 (2018), p. 636, 10.1038/s41419-018-0669-8
J. Shin, H.J. Lee, D.B. Jung, J.H. Jung, H.J. Lee, E.O. Lee, S.G. Lee, B.S. Shim, S.H. Cho, S.G. Ko, K.S. Ahn, S. Jeong, S.H. Kim Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells PLoS One, 6 (2011), p. 21492, 10.1371/journal.pone.0021492
T. Xu, Q. Pang, Y. Wang, X. Yan Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells Int J. Mol. Med, 40 (2017), pp. 1669-1678, 10.3892/ijmm.2017.3163
R. Luo, D. Fang, P. Chu, H. Wu, Z. Zhang, Z. Tang Multiple molecular targets in breast cancer therapy by betulinic acid Biomed. Pharm., 84 (2016), pp. 1321-1330, 10.1016/j.biopha.2016.10.018
Shankar, A. Zhang, D. Franco, S. Gupta Betulinic acid-mediated apoptosis in human prostate cancer cells involves p53 and nuclear factor-kappa B (NF-κB) pathways Molecules, 22 (2017), p. 264, 10.3390/molecules22020264
J. Yang, B. Qiu, X. Li, H. Zhang, W. Liu p53-p66(shc)/miR-21-Sod2 signaling is critical for the inhibitory effect of betulinic acid on hepatocellular carcinoma Toxicol. Lett., 238 (2015), pp. 1-10, 10.1016/j.toxlet.2015.07.016
J.A. DiDonato, F. Mercurio, M. Karin NF-κB and the link between inflammation and cancer Immunol. Rev., 2012 (246) (2012), pp. 379-400, 10.1111/j.1600-065X.2012.01099.x
V. Heissmeyer, D. Krappmann, E.N. Hatada Shared pathways of IkappaB kinase-induced SCF (betaTrCP)-mediated ubiquitination and degradation for the NF-kappaB precursor p105 and IkappaBalpha Mol. Cell Biol., 21 (2001), pp. 1024-1035, 10.1128/MCB.21.4.1024-1035.2001
A.S. Baldwin Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights Annu Rev. Immunol., 14 (1996), pp. 649-683, 10.1146/annurev.immunol.14.1.649
K. Taniguchi, M. Karin NF-κB, inflammation, immunity and cancer: coming of age Nat. Rev. Immunol., 18 (2018), pp. 309-324, 10.1038/nri.2017.142
Y. Takada, B.B. Aggarwal Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J. Immunol., 171 (2003), pp. 3278-3286, 10.4049/jimmunol.171.6.3278
E. Shankar, A. Zhang, D. Franco, S. Gupta Betulinic acid-mediated apoptosis in human prostate cancer cells involves p53 and nuclear factor-kappa B (NF-κB) pathways Molecules, 22 (2017), p. 264, 10.3390/molecules22020264
X. Chen, X.N. Yuan, Z. Zhang, P.J. Gong, W.N. Yin, Q. Jiang, J. Xu, X.L. Xu, Y. Gao, W.L. Chen, F.F. Chen, Y.H. Tian, L. Wei, J.W. Zhang Betulinic acid inhibits cell proliferation and migration in gastric cancer by targeting the NF-κB/VASP pathway Eur. J. Pharm., 889 (2020), Article 173493, 10.1016/j.ejphar.2020.173493
Sanaye Majma Pantea , Mojaveri Reza Mohammad, Ahmadian Roohollah, Jahromi Sabet Mehdi, Bahramsoltani Roodabeh, Apigenin and its dermatological applications: A comprehensive review Phytochemistry Volume 203, November 2022, 113390, https://doi.org/10.1016/j.phytochem.2022.113390
W Lim, S Park, FW Bazer, G. Song Apigenin reduces survival of choriocarcinoma cells by inducing apoptosis via the PI3K/Akt and ERK1/2 MAPK pathways J Cell Physiol, 231 (2016), pp. 2690-2699
Li, X Cheng, C Chen, W Huijuan, H Zhao, W Liu, et al. Apigenin, a flavonoid constituent derived from P. villosa, inhibits hepatocellular carcinoma cell growth by CyclinD1/CDK4 regulation via p38 MAPK-p21 signaling Pathol Res Pract, 216 (2020), Article 152701
Anwar, S.; Almatroudi, A.; Alsahli, M.A.; Khan, M.A.; Khan, A.A.; Rahmani, A.H. Natural Products: Implication in Cancer Prevention and Treatment through Modulating Various Biological Activities. Anticancer Agents Med. Chem. 2020, 20, 2025–2040.
Almatroodi, S.A.; Almatroudi, A.; Alsahli, M.A.; Rahmani, A.H. Fenugreek (Trigonella Foenum-Graecum) and its Active Compounds: A Review of its Effects on Human Health through Modulating Biological Activities. Pharmacog. J. 2021, 13, 813–821.
Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Rahmani, A.H. Garlic and its Active Compounds: A Potential Candidate in The Prevention of Cancer by Modulating Various Cell Signalling Pathways. Anticancer Agents Med. Chem. 2019, 19, 1314–1324.
Long, X.; Fan, M.; Bigsby, R.M.; Nephew, K.P. Apigenin Inhibits Antiestrogen-resistant Breast Cancer Cell Growth through Estrogen Receptor-α-dependent and -independent Mechanisms. Mol. Cancer Ther. 2008, 7, 2096–2108.
Way, T.D.; Kao, M.C.; Lin, J.K. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem. 2004, 279, 4479–4489.
Choi, E.J.; Kim, G.H. Apigenin Induces Apoptosis through a Mitochondria/Caspase-Pathway in Human Breast Cancer MDA-MB-453 Cells. J. Clin. Biochem. Nutr. 2009, 44, 260–265.
Choi, E.J.; Kim, G.H. 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol. Rep. 2009, 22, 1533–1537.
Zheng, P.W.; Chiang, L.C.; Lin, C.C. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci. 2005, 76, 1367–1379.
Li, Z.D.; Hu, X.W.; Wang, Y.T.; Fang, J. Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Lett. 2009, 583, 1999–2003.
Ittiudomrak, T.; Puthong, S.; Roytrakul, S.; Chanchao, C. α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells. Toxicol. Res. 2019, 35, 167–179.
Liang, X.; Xu, C.; Cao, X.; Wang, W. Isovitexin suppresses cancer stemness property and induces apoptosis of osteosarcoma cells by disruption of the DNMT1/miR-34a/Bcl-2 axis. Cancer Manag. Res. 2019, 11, 8923.
Almatroodi, S.A.; Syed, M.A.; Rahmani, A.H. Potential therapeutic targets of Curcumin, most abundant active compound of turmeric spice: Role in the management of various types of cancer. Recent Pat. Anti-Cancer Drug Discov. 2021, 16, 3–29.
Almatroudi, A.; Alsahli, M.A.; Alrumaihi, F.; Allemailem, K.S.; Rahmani, A.H. Ginger: A novel strategy to battle cancer through modulating cell signalling pathways: A review. Curr. Pharm. Biotechnol. 2019, 20, 5–16.
Wang, W.; Liu, X.; Zhang, Z.; Yin, M.; Chen, X.; Zhao, S.; Wu, L. Apigenin Induced Apoptosis by Downregulating Sulfiredoxin Expression in Cutaneous Squamous Cell Carcinoma. Oxidative Med. Cell. Longev. 2022, 2022, 8172866.
Gupta, S.; Afaq, F.; Mukhtar, H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 2002, 21, 3727–3738.
Jin, X.; Ren, C. Effect and mechanism of apigenin on VEGF expression in human breast cancer cells. Zhonghua Zhong Liu Za Zhi [Chin. J. Oncol.] 2007, 29, 495–499.
Granato, M.; Gilardini Montani, M.S.; Santarelli, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death. J. Exp. Clin. Cancer Res. 2017, 36, 167.
Lee, Y.; Sung, B.; Kang, Y.J.; Kim, D.H.; Jang, J.-Y.; Hwang, S.Y.; Kim, M.; Lim, H.S.; Yoon, J.-H.; Chung, H.Y. Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int. J. Oncol. 2014, 44, 1599–1606.
Yang, J.; Pi, C.; Wang, G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed. Pharmacother. 2018, 103, 699–707.
Lim, W.; Park, S.; Bazer, F.W.; Song, G. Apigenin reduces survival of choriocarcinoma cells by inducing apoptosis via the PI3K/AKT and ERK1/2 MAPK pathways. J. Cell. Physiol. 2016, 231, 2690–2699.
Xu, M.; Wang, S.; Song, Y.; Yao, J.; Huang, K.; Zhu, X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol. Lett. 2016, 11, 3075–3080.
Ganesan, K.; Xu, B. Molecular targets of vitexin and isovitexin in cancer therapy: A critical review. Ann. N. Y. Acad. Sci. 2017, 1401, 102–113.
Zhu, H.; Zhao, N.; Jiang, M. Isovitexin attenuates tumor growth in human colon cancer cells through the modulation of apoptosis and epithelial-mesenchymal transition via PI3K/Akt/mTOR signaling pathway. Biochem. Cell Biol. 2021, 99, 741–749.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Stallion Journal for Multidisciplinary Associated Research Studies
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.