Predicting Dental Malformations Using Deep Learning: A Model for Estimating the Risk of Oral and Jaw Malformations

Authors

  • Muayad Aljashami Department of Dentistry, AL-Rasheed University College, Baghdad 10011, IRAQ.

DOI:

https://doi.org/10.55544/sjmars.4.3.13

Keywords:

Dental Malformations, Deep Learning in Dentistry, Preventive Orthodontics, Personalized Diagnosis, AI-Assisted Cephalometrics

Abstract

Objective: Early detection of oral and jaw malformations is critical for preventing excessive functional and aesthetic headaches. This study proposes a deep getting to know version to improve diagnostic accuracy and allow customized chance stratification, addressing gaps in conventional cephalometric analysis.

Methods: A hybrid architecture combining convolutional neural networks (CNN) for picture feature extraction and bidirectional LSTMs for sequential cephalometric evaluation became evolved. The model integrates demographic records (age, gender) and strategies various imaging modalities (panoramic X-rays, CBCT) from 1,291 patients, augmented with noise reduction and z-rating normalization.

Results: The version achieved 93.2% accuracy (AUC: 0.94) at the take a look at set, lowering diagnostic mistakes by 22% as compared to present strategies. Class-unique sensitivity ranged from 87.3% (Crossbite) to 95.1% (Class III malocclusion). Inference speed (18 ms/image) passed 3D U-Net benchmarks by way of 3.4×, demonstrating scientific feasibility.

Conclusion: By bridging AI-driven analytics with preventive dentistry, this framework complements early malformation detection and supports customized treatment making plans. Its deployment could lessen lengthy-term healthcare expenses and enhance patient effects thru well timed, statistics-knowledgeable interventions.

References

[1] Alhammadi, M. S., Halboub, E., Fayed, M. S., Labib, A., & El-Saaidi, C. (2018). Global distribution of malocclusion traits: A systematic review. Dental press journal of orthodontics, 23(06), 40-e1.

[2] Proffit, W. R., Fields, H., Larson, B., & Sarver, D. M. (2019). Contemporary Orthodontics, 6e: South Asia Edition-E-Book. Elsevier Health Sciences.

[3] Monterubbianesi, R., Tosco, V., Vitiello, F., Orilisi, G., Fraccastoro, F., Putignano, A., & Orsini, G. (2022). Augmented, virtual and mixed reality in dentistry: a narrative review on the existing platforms and future challenges. Applied Sciences, 12(2), 877.

[4] Schwendicke, F. A., Samek, W., & Krois, J. (2020). Artificial intelligence in dentistry: chances and challenges. Journal of dental research, 99(7), 769-774.

[5] Tahir, A. (2024). Optimizing Orthodontic Clear Aligner Treatment with Artificial Intelligence Driven Dental Monitoring (Doctoral dissertation, University of Illinois Chicago).

[6] Kim, I. H., Jeong, J., Kim, J. S., Lim, J., Cho, J. H., Hong, M., ... & Kim, N.

[7] (2025). Predicting orthognathic surgery results as postoperative lateral cephalograms using graph neural networks and diffusion models. Nature Communications, 16(1), 2586.

[8] Chen, B., Zhang, Y., & Liu, O. (2024). MicroRNAs in maxillofacial bone modeling and remodeling: implications for malocclusion development and orthodontic treatment. Frontiers in Cell and Developmental Biology, 12, 1355312.

[9] Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., ... & Socher, R. (2021). Deep learning-enabled medical computer vision. NPJ digital medicine, 4(1), 5.

[10] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.

[11] Mallineni, S. K., Sethi, M., Punugoti, D., Kotha, S. B., Alkhayal, Z., Mubaraki, S., ... & Sakhamuri, S. (2024). Artificial Intelligence in Dentistry: A Descriptive Review. Bioengineering, 11(12), 1267.

[12] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp. 234-241). Springer international publishing.

[13] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

[14] Bresnahan, B. W., Kiyak, H. A., Masters, S. H., McGorray, S. P., Lincoln, A., & King, G. (2010). Quality of life and economic burdens of malocclusion in US patients enrolled in Medicaid. The Journal of the American Dental Association, 141(10), 1202-1212.

[15] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).

[16] Palermo, A., Cazzato, G., Di Noia, A., Ferrante, L., Trilli, I., Sabatelli, F., ... & Memè, L. (2024). Comparative effectiveness of orthopedic devices for treating skeletal Class III malocclusion in growing patients. Oral and Implantology: a Journal of Innovation and Techniques for Oral Health, 16(3 (S1) Special Issue), 612-634.

[17] Hung, K. F., Ai, Q. Y. H., Leung, Y. Y., & Yeung, A. W. K. (2022). Potential and impact of artificial intelligence algorithms in dento-maxillofacial radiology. Clinical Oral Investigations, 26(9), 5535-5555.

[18] MirzasoleimanBarzi, P. (2022). Mandibular projection in Class II Division 2 subjects following maxillary incisor proclination, overbite correction and dentoalveolar expansion using clear aligners.

[19] Nikkerdar, N., Golshah, A., Mobarakeh, M. S., Fallahnia, N., Azizie, B., & Shoohanizad, E. (2024). Recent progress in application of zirconium oxide in dentistry. Journal of Medicinal and Pharmaceutical Chemistry Research, 6, 1042-1071.

[20] Piper, M. (2025). Temporomandibular Joint MRI and CT Imaging. In Handbook of Research on T-Scan Technology Applications in Dental Medicine (pp. 413-562). IGI Global Scientific Publishing.

[21] Wang, L., Mo, Y., Wang, P., Shen, W., Xu, L., Zhao, G., & Lu, J. (2024). Prediction Model of Adverse Pregnancy Outcome in Pre-Eclampsia Based on Logistic Regression and Random Forest Algorithm. Alternative Therapies in Health & Medicine, 30(1).

[22] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115-118.

[23] Top, A. H. M. E. T., Özdoğan, M. A. H. M. U. T., & Yeniad, M. (2023). Quantitative level determination of fixed restorations on panoramic radiographs using deep learning. International Journal of Computerized Dentistry, 26(4).

[24] Kwak, G. H., Kwak, E. J., Song, J. M., Park, H. R., Jung, Y. H., Cho, B. H., ... & Hwang, J. J. (2020). Automatic mandibular canal detection using a deep convolutional neural network. Scientific Reports, 10(1), 5711.

[25] Bahreini, R., Sardareh, M., & Arab-Zozani, M. (2024). A scoping review of COVID-19 vaccine hesitancy: refusal rate, associated factors, and strategies to reduce. Frontiers in Public Health, 12, 1382849.

[26] Carrillo‐Perez, F., Pecho, O. E., Morales, J. C., Paravina, R. D., Della Bona, A., Ghinea, R., ... & Herrera, L. J. (2022). Applications of artificial intelligence in dentistry: A comprehensive review. Journal of Esthetic and Restorative Dentistry, 34(1), 259-280.

[27] Alafif, T., Tehame, A. M., Bajaba, S., Barnawi, A., & Zia, S. (2021). Machine and deep learning towards COVID-19 diagnosis and treatment: survey, challenges, and future directions. International journal of environmental research and public health, 18(3), 1117.

[28] Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56.

[29] Zhang, H., Liu, C., Yang, P., Yang, S., Yu, Q., & Liu, R. (2024). The concept of AI-assisted self-monitoring for skeletal malocclusion. Health Informatics Journal, 30(3), 14604582241274511.

[30] Chvatal, B. A., Behrents, R. G., Ceen, R. F., & Buschang, P. H. (2005). Development and testing of multilevel models for longitudinal craniofacial

a. growth prediction. American Journal of Orthodontics and Dentofacial Orthopedics, 128(1), 45-56.

[31] Alhmoud, B., Bonnici, T., Melley, D., Patel, R., & Banerjee, A. (2023). Performance of digital early warning score (NEWS2) in a cardiac specialist setting: retrospective cohort study. BMJ open, 13(3), e066131.

[32] Cho, S. J., Moon, J. H., Ko, D. Y., Lee, J. M., Park, J. A., Donatelli, R. E., & Lee, S. J. (2024). Orthodontic treatment outcome predictive performance differences between artificial intelligence and conventional methods. The Angle Orthodontist, 94(5), 557-565.

[33] Gao, Y., Zhang, P., Xie, Y., Han, J., Zeng, L., Ning, N., ... & Chen, Z. (2024). Application of transformers in stomatological imaging: A review. Digital Medicine, 10(3), e24-00001.

[34] Shujaat, S. (2025). Automated machine learning in dentistry: A narrative review of applications, challenges, and future directions. Diagnostics, 15(3), 273.

[35] Brandon, A. (2023). An Investigation Into the Origin and Molecular Mechanism of Species-Specific Craniofacial Sexual Dimorphism in Lake Malawi Cichlids.

[36] Zhang, Y., Gao, J., Tan, Z., Zhou, L., Ding, K., Zhou, M., ... & Wang, D. (2024). Data-centric foundation models in computational healthcare: A survey. arXiv preprint arXiv:2401.02458.

[37] Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019, July). Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2623-2631).

[38] Desai, A. D. (2024). Principles for Machine Learning Systems in Magnetic Resonance Imaging. Stanford University.

[39] Loo, C. Y. (2022). The relationship between self-esteem, social support, stress and social anxiety during the transition to endemic stage of Covid-19 among university students in Malaysia (Doctoral dissertation, UTAR).

[40] Popp, N., Zhang, D., Metzen, J. H., Hein, M., & Schott, L. Foundation Model- Based Data Selection for Dense Prediction Tasks. In ICLR 2025 Workshop on Foundation Models in the Wild.

[41] Dipalma, G., Inchingolo, A. D., Inchingolo, A. M., Piras, F., Carpentiere, V., Garofoli, G., ... & Inchingolo, F. (2023). Artificial intelligence and its clinical applications in orthodontics: a systematic review. Diagnostics, 13(24), 3677.

[42] Gray, A. A. (2006). The hyoid: A comprehensive study of hyoid morphology including sexual dimorphism in humans, early identification of sudden infant death syndrome victims and forensic applications. University of California, Riverside.

[43] Tyndall, D. A., Price, J. B., Gaalaas, L., & Spin-Neto, R. (2024). Surveying the landscape of diagnostic imaging in dentistry’s future: four emerging technologies with promise. The Journal of the American Dental Association.

[44] Shan, T., Tay, F. R., & Gu, L. (2021). Application of artificial intelligence in dentistry. Journal of dental research, 100(3), 232-244.

[45] Weragoda, S. (2024). A Medical Physics Chronicle In Three Acts: Machine Learning In Radiation Oncology; Designing RF Shim Coils In MRI; New Partial Volume Analysis In MRF (Doctoral dissertation, Case Western Reserve University).

[46] Meijerink, L. M., Dunias, Z. S., Leeuwenberg, A. M., de Hond, A. A., Jenkins, D. A., Martin, G. P., ... & Schuit, E. (2024). Updating methods for AI-based clinical prediction models: a scoping review. Journal of Clinical Epidemiology, 111636.

[47] The Lancet Gastroenterology & Hepatology (2024). Progress towards elimination of viral hepatitis. Researchers: Homie Razavi, Samuel So, et al. pp. 30-45.

[48] Journal of Viral Hepatitis (2023). Viral hepatitis and hepatocellular carcinoma. Researchers: Anna S. Lok, Gregory J. Dore, et al. pp. 70-85.

[49] Emily J Cartwright, Priti R Patel the Journal of Infectious Diseases 229 (Supplement_3), S350-S356, 2024.

[50] Moorman AC. De Perio M, Goldschmidt R, et al. Testing and clinical management of health care personnel poten tially exposed to hepatitis C virus-CDC guidance. United States, 2020. MMWR Recomm Rep 2020, 69:1-8.

[51] Schillie S, Wester C. Osborne M. Wesołowski L. Ryerson AB. CDC recommendations for hepatitis C screening among adults-United States, 2020. MMWR Recomm Rep 2020, 69:1-17.

[52] Panel on Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV. (2023). Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV. Retrieved November 8, 2022.

[53] Kidney Disease: Improving Global Outcomes (KDIGO) Hepatitis C Work Group. KDIGO 2018 clinical practice guideline for the prevention, diagnosis, evaluation, and treatment of hepatitis C in chronic kidney disease. Kidney Int Suppl (2011) 2018: 8-91-165.

[54] Roth D, Bloom RD, Molnar MZ, et al. KDOQI US com-mentary on the 2018 KDIGO clinical practice guidelinefor the prevention, diagnosis, evaluation, and treatment of hepatitis C Am J Kidney Dis 2020, 75:665-83.

[55] Hazra A, Collison MW, Davis AM. CDC sexually transmit ted infections treatment guidelines, 2021. JAMA 2022: 327 870-1.

Downloads

Published

2025-06-20

How to Cite

Aljashami, M. (2025). Predicting Dental Malformations Using Deep Learning: A Model for Estimating the Risk of Oral and Jaw Malformations. Stallion Journal for Multidisciplinary Associated Research Studies, 4(3), 144–154. https://doi.org/10.55544/sjmars.4.3.13

Issue

Section

Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.