The Role of Serum (Eotaxin-3) Related with Patients of Allergic Diseases from Iraqi Grain Silos Workers Who Had a Positive Result of Total IgE
DOI:
https://doi.org/10.55544/sjmars.4.4.9Keywords:
total IgE, Eotaxin-3, allergic occupational diseaseAbstract
Through the identification of positive total IgE assay results in the serum and the estimation of Eotaxin-3 levels, this study sought to assess the role of (Eotaxin-3) in patients with allergic diseases from Silos workers. . The majority of Silos employees reported having similar symptoms, including red or itchy eyes, headache pain, cough, wheezing, nasal congestion, poor sense of smell, hives or swelling, shortness of breath, itchy or runny nose, frequent colds, frequent diarrhea, hoarse voice, or allergic asthma, allergic rhinitis, conjunctivitis, eosinophilia, and hyper eosinophilia syndrome. In this work, we showed that eotaxin-3 has a significant role in the pathogenicity of individuals with allergic illnesses in Silos who had elevated serum levels of total immunoglobulin E. One hundred and twenty subjects (eighty allergy patients and forty seemingly healthy controls) were used in the study to test the levels of Eotaxin-3 and Total IgE in the serum of the allergic patients as well as the control group. Using a VIDAS equipment, VIDAS®TOTAL IgE (IGE), Marcy-l' Etoile, France, the blood samples were utilized to estimate the serum total immunoglobulin-E (IgE) ratio. Blood Eotaxin-3 was also estimated. The ELISA MELSIN/China method quantitatively detects the Eotaxin-3 marker in patient serum and control serum. The results indicated that patients with allergic diseases had much higher concentrations of both IgE and Eotaxin-3 in their serum than did healthy controls (p<0.001). Additionally, there was no correlation between the levels of IgE and Eotaxin-3 in patients' serum; the correlation coefficient (r) between the two markers was = -0.06, and the level of significance was 0.642 (non-significant).
References
[1] Akdis, C. A. (2006). Allergy and hypersensitivity: mechanisms of allergic diseas Current opinion in immunology, 18(6), 718-726.3
[2] Anderson SE, Long C, Dotson GS. OCCUPATIONAL ALLERGY. Eur Med J (Chelmsf). 2017 Jun;2(2):65-71. PMID: 30976662; PMCID: PMC6454566 .
[3] Ansotegui, I. J., Melioli, G., Canonica, G. W., Caraballo, L., Villa, E., Ebisawa, M., ... & Zuberbier, T. (2020). IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World allergy organization journal, 13(2), 100080.
[4] Aoki, A., Hirahara, K., Kiuchi, M., & Nakayama, T. (2021). Eosinophils: cells known for over 140 years with broad
[5] Chae, S. C., Lee, Y. C., Park, Y. R., Shin, J. S., Song, J. H., Oh, G. J., ... & Chung, H. T. (2004). Analysis of the polymorphisms in eotaxin gene family and their association with asthma, IgE, and eosinophil. Biochemical and biophysical research communications, 320(1), 131-137.
[6] Coeffier, M., Lorentz, A., Manns, M. P., & Bischoff, S. C. (2005). Epsilon germ‐line and IL‐4 transcripts are expressed in human intestinal mucosa and enhanced in patients with food allergy. Allergy, 60(6), 822-827.
[7] Dodev, T. S., Bowen, H., Shamji, M. H., Bax, H. J., Beavil, A. J., McDonnell, J. M., ... & James, L. K. (2015). Inhibition of allergen‐dependent IgE activity by antibodies of the same specificity but different class. Allergy, 70(6), 720-724.
[8] Dullaers, M., De Bruyne, R., Ramadani, F., Gould, H. J., Gevaert, P., & Lambrecht, B. N. (2012). The who, where, and when of IgE in allergic airway disease. Journal of Allergy and Clinical Immunology, 129(3), 635-645.
[9] Eckl‐Dorna, J., Pree, I., Reisinger, J., Marth, K., Chen, K. W., Vrtala, S., ... & Niederberger, V. (2012). The majority of allergen‐specific IgE in the blood of allergic patients does not originate from blood‐derived B cells or plasma cells. Clinical & Experimental Allergy, 42(9), 1347-1355.
[10] Eguiluz-Gracia, I., Layhadi, J. A., Rondon, C., & Shamji, M. H. (2019). Mucosal IgE immune responses in respiratory diseases. Current Opinion in Pharmacology, 46, 100-107.
[11] Froidure, A., Mouthuy, J., Durham, S. R., Chanez, P., Sibille, Y., & Pilette, C. (2016). Asthma phenotypes and IgE responses. European Respiratory Journal, 47(1), 304-319.
[12] Fulkerson, P. C., & Rothenberg, M. E. (2018). Eosinophil development, disease involvement, and therapeutic suppression. Advances in immunology, 138, 1-34.
[13] Galli, S. J., Tsai, M., & Piliponsky, A. M. (2008). The development of allergic inflammation. Nature, 454(7203), 445-454.
[14] Geha, R. S., Jabara, H. H., & Brodeur, S. R. (2003). The regulation of immunoglobulin E class-switch recombination. Nature Reviews Immunology, 3(9), 721-732.
[15] Gould, H. J., Sutton, B. J., Beavil, A. J., Beavil, R. L., McCloskey, N., Coker, H. A., ... & Smurthwaite, L. (2003). The biology of IGE and the basis of allergic disease. Annual review of immunology, 21(1), 579-628.
[16] Huber, A. K., Giles, D. A., Segal, B. M., & Irani, D. N. (2018). An emerging role for eotaxins in neurodegenerative disease. Clinical Immunology, 189, 29-33.
[17] Hulse, K. E., Stevens, W. W., Tan, B. K., & Schleimer, R. P. (2015). Pathogenesis of nasal polyposis. Clinical & Experimental Allergy, 45(2), 328-346.
[18] Khaitov,M.R, A. R. Gaisina, I. P. Shilovskiy, V. V. Smirnov, G.Ramenskaia, A. A. Nikonova, R. M. Khaitov, 2018, The Role of Interleukin_33 in Pathogenesis of Bronchial Asthma. Biochemistry, 2018, 83(1): 13-25.
[19] Martins, T. B., Bandhauer, M. E., Bunker, A. M., Roberts, W. L., & Hill, H. R. (2014). New childhood and adult reference intervals for total IgE. Journal of Allergy and Clinical Immunology, 133(2), 589-591.
[20] Nakayama, T., Watanabe, Y., Oiso, N., Higuchi, T., Shigeta, A., Mizuguchi, N., ... & Yoshie, O. (2010). Eotaxin-3/CC chemokine ligand 26 is a functional ligand for CX3CR1. The Journal of Immunology, 185(11), 6472-6479.
[21] Provost, V., Larose, M. C., Langlois, A., Rola‐Pleszczynski, M., Flamand, N., & Laviolette, M. (2013). CCL26/eotaxin‐3 is more effective to induce the migration of eosinophils of asthmatics than CCL11/eotaxin‐1 and CCL24/eotaxin‐2. Journal of leukocyte biology, 94(2), 213-222.
[22] Raby, B. A., Van Steen, K., Lazarus, R., Celedón, J. C., Silverman, E. K., & Weiss, S. T. (2006). Eotaxin polymorphisms and serum total IgE levels in children with asthma. Journal of allergy and clinical immunology, 117(2), 298-305.
[23] Singh, N., Baby, D., Rajguru, J. P., Patil, P. B., Thakkannavar, S. S., & Pujari, V. B. (2019). Inflammation and cancer. Annals of African medicine, 18(3), 121.
[24] Stevens, W. W., Lee, R. J., Schleimer, R. P., & Cohen, N. A. (2015). Chronic rhinosinusitis pathogenesis. Journal of Allergy and Clinical Immunology, 136(6), 1442-1453.
[25] Tian, P., Ou, H., Wu, F., Ma, Y., Liu, X., Chen, Q., ... & Zou, H. (2019, March). Interleukin‐4‒induced posttranscriptional gene regulation of CCL26 by the RNA‐binding protein HuR in primary human nasal polyp‒derived epithelial cells. In International forum of allergy & rhinology (Vol. 9, No. 3, pp. 311-321).and new functions. Allergology International, 70(1), 3-8.
[26] Wang, X., Ma, C., Zhang, Y., Ning, L., Chen, H., & Zhou, F. (2013). Clinical significance of the dynamic changes in serum eotaxin, interleukin 13 and total IgE in children with bronchial asthma. Iranian journal of pediatrics, 23(5), 525.
[27] Wu, L. C., & Zarrin, A. A. (2014). The production and regulation of IgE by the immune system. Nature Reviews Immunology, 14(4), 247-259.
[28] Zajkowska, M., & Mroczko, B. (2020). Eotaxins and their receptor in colorectal cancer—a literature review. Cancers, 12(6), 1383.
[29] Zajkowska, M., & Mroczko, B. (2021). From Allergy to Cancer—Clinical Usefulness of Eotaxins. Cancers, 13(1), 128.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Stallion Journal for Multidisciplinary Associated Research Studies

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.