Tailoring Metal Nanoparticles: A Comparative Assessment of Au, Ag, Cu, Zn, Pt, and Fe for Targeted Applications

Authors

DOI:

https://doi.org/10.55544/sjmars.4.2.22

Keywords:

Metal nanoparticles, gold, silver, copper, zinc, platinum, iron, synthesis methods, catalytic activity, biomedical applications, environmental remediation

Abstract

Metal nanoparticles (MNPs) represent a class of highly versatile materials distinguished by their tuneable physicochemical properties, including a high surface-to-volume ratio, quantum size effects, and localized surface plasmon resonance (SPR). This review provides a comprehensive comparative analysis of gold (Au), silver (Ag), copper (Cu), zinc (Zn), platinum (Pt), and iron (Fe) nanoparticles, detailing their inherent physicochemical attributes, diverse synthesis methodologies, and wide-ranging applications. Au and Ag nanoparticles exhibit prominent optical properties attributed to SPR, rendering them invaluable for advanced biomedical imaging and targeted drug delivery systems. Conversely, Pt and Zn nanoparticles demonstrate superior catalytic and photocatalytic efficiencies, while Fe nanoparticles possess robust superparamagnetic behavior, enabling their utility in magnetic hyperthermia and environmental remediation. Although cost-effective, Cu and Zn nanoparticles are susceptible to oxidation, necessitating surface passivation strategies for enhanced long-term stability. A variety of synthesis approaches, including physical techniques (e.g., laser ablation, sputtering), chemical reduction methods, and environmentally benign green synthesis (e.g., plant extracts, microorganisms), are critically evaluated for their impact on purity, scalability, and ecological footprint. Physical methods yield high-purity nanoparticles but incur substantial costs. Chemical methods offer precise control over particle size and morphology, albeit often involving hazardous reagents. Green synthesis presents a sustainable alternative, though challenges in reproducibility and large-scale manufacturing persist. In terms of application, Au and Ag largely dominate the biomedical sector; Pt and Zn are extensively employed in catalysis and energy storage; and Fe and Cu are prominent in environmental remediation and magnetic applications. This review identifies current trends, persistent challenges, and future research directions, underscoring the critical need for advancements in MNP stability, scalable green synthesis protocols, and the development of multifunctional nanoparticle systems to optimize performance across various scientific and technological domains.

References

[1] Ahmad, I., Aftab, M. A., Fatima, A., Mekkey, S. D., Melhi, S., & Ikram, S. (2024). A comprehensive review on the advancement of transition metals incorporated on functional magnetic nanocomposites for the catalytic reduction and photocatalytic degradation of organic pollutants. Coordination Chemistry Reviews, 514, 215904. https://doi.org/10.1016/j.ccr.2024.215904

[2] Akintelu, S. A., Folorunso, A. S., Folorunso, F. A., & Oyebamiji, A. K. (2020). Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6 (7): e04508. https://doi.org/10.1016/j.heliyon.2020.e04508

[3] Alavi M, Karimi N, Valadbeigi T. (2019) Antibacterial, Antibiofilm, Antiquorum Sensing, Antimotility, and Antioxidant Activities of Green Fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via Protoparmeliopsis muralis Lichen Aqueous Extract against Multi-Drug-Resistant Bacteria. ACS Biomater Sci Eng. 5(9):4228-4243. https://doi.org/10.1021/acsbiomaterials.9b00274

[4] Alhajj, M., & Ghoshal, S. K. (2024). Sustainability, safety, biocompatibility and benefits of laser ablated gold, silver and copper nanoparticles: A comprehensive review. Journal of Molecular Liquids, 126130. https://doi.org/10.1016/j.molliq.2024.126130

[5] Almeida, M. B., Galdiano, C. M. R., Silva Benvenuto, F. S. R. D., Carrilho, E., & Brazaca, L. C. (2024). Strategies employed to design biocompatible metal nanoparticles for medical science and biotechnology applications. ACS Applied Materials & Interfaces, 16(49), 67054-67072. https://doi.org/10.1021/acsami.4c00838

[6] Altammar, K. A. (2023). A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers in microbiology, 14, 1155622. https://doi.org/10.3389/fmicb.2023.1155622

[7] Arif, M. D., Hoque, M. E., Rahman, M. Z., & Shafoyat, M. U. (2024). Emerging directions in green nanomaterials: synthesis, physicochemical properties and applications. Materials Today Communications, 109335. https://doi.org/10.1016/j.mtcomm.2024.109335

[8] Ayodhya, D. (2023). Recent progress on detection of bivalent, trivalent, and hexavalent toxic heavy metal ions in water using metallic nanoparticles: A review. Results in Chemistry, 5, 100874. https://doi.org/10.1016/j.rechem.2023.100874

[9] Basavegowda N, Baek KH. (2021) Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules. 26(4):912. https://doi.org/10.3390/molecules26040912

[10] Begum SJP, Pratibha S, Rawat JM, Venugopal D, Sahu P, Gowda A, Qureshi KA, Jaremko M. (2022) Recent Advances in Green Synthesis, Characterization, and Applications of Bioactive Metallic Nanoparticles. Pharmaceuticals (Basel). 15(4):455. https://doi.org/10.3390/ph15040455

[11] Carofiglio, M., Barui, S., Cauda, V., & Laurenti, M. (2020). Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. Applied Sciences, 10(15), 5194. https://doi.org/10.3390/app10155194

[12] Chauhan, V., Saran, M., Yadav, J., & Kumar, R. (2023). Methods for the Development of High-Performance Metallic Nanocomposites. In Nanoparticles Reinforced Metal Nanocomposites: Mechanical Performance and Durability (pp. 89-126). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9729-7_4

[13] Devi L, Kushwaha P, Ansari TM, Kumar A, Rao A. (2024) Recent Trends in Biologically Synthesized Metal Nanoparticles and their Biomedical Applications: a Review. Biol Trace Elem Res. 202(7):3383-3399. doi: https://doi.org/10.1007/s12011-023-03920-9

[14] Dhiman S, Yadav A, Debnath N, Das S. (2021) Application of Core/Shell Nanoparticles in Smart Farming: A Paradigm Shift for Making the Agriculture Sector More Sustainable. J Agric Food Chem. 24;69(11):3267-3283. doi: https://doi.org/10.1021/acs.jafc.0c05403

[15] Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., Gupta, P. K., & Kim, B. S. (2021). Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts, 11(8), 902. https://doi.org/10.3390/catal11080902

[16] Dubey, S., Virmani, T., Yadav, S. K., Sharma, A., Kumar, G., & Alhalmi, A. (2024). Breaking Barriers in Eco‐Friendly Synthesis of Plant‐Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. Journal of Nanomaterials, (1), 9914079. https://doi.org/10.1155/2024/9914079

[17] Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. (2024) Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects. Nanomaterials. 14(22):1805. https://doi.org/10.3390/nano14221805

[18] Esmailzadeh, F., Taheri-Ledari, R., Salehi, M. M., Zarei-Shokat, S., Ganjali, F., Mohammadi, A., ... & Maleki, A. (2024). Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Physical Chemistry Chemical Physics. https://doi.org/10.1039/D3CP04131J

[19] Franco D, Calabrese G, Guglielmino SPP, Conoci S. (2022) Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms. 10(9):1778. https://doi.org/10.3390/microorganisms10091778

[20] Gul, M., Kashif, M., Muhammad, S., Azizi, S., & Sun, H. (2025). Various Methods of Synthesis and Applications of Gold-Based Nanomaterials: A Detailed Review. Crystal Growth & Design, 25(7), 2227-2266. https://doi.org/10.1021/acs.cgd.4c01687

[21] Hashem AH, Saied E, Badr BM, Dora MS, Diab MA, Abdelaziz AM, Elkady FM, Ali MA, Issa NI, Hamdy ZA, Nafea ME, Khalifa AN, Adel A, Hasib A, Hawela AM, El-Gazzar MM, Nouh MA, Nahool AA, Attia MS. (2025) Biosynthesis of trimetallic nanoparticles and their biological applications: a recent review. Arch Microbiol. 207(3):50. https://doi.org/10.1007/s00203-025-04237-y

[22] Hussain, W., Algarni, S., Rasool, G., Shahzad, H., Abbas, M., Alqahtani, T., & Irshad, K. (2024). Advances in nanoparticle-enhanced thermoelectric materials from synthesis to energy harvesting: a review. ACS omega, 9(10), 11081-11109. https://doi.org/10.1021/acsomega.3c07758

[23] Hyder S, Ul-Nisa M, Shahzadi, Shahid H, Gohar F, Gondal AS, Riaz N, Younas A, Santos-Villalobos SL, Montoya-Martínez AC, Sehar A, Latif F, Rizvi ZF, Iqbal R. (2023) Recent trends and perspectives in the application of metal and metal oxide nanomaterials for sustainable agriculture. Plant Physiol Biochem. 202:107960. https://doi.org/10.1016/j.plaphy.2023.107960

[24] Jain, K., Takuli, A., Gupta, T. K., & Gupta, D. (2024). Rethinking nanoparticle synthesis: a sustainable approach vs. traditional methods. Chemistry–An Asian Journal, 19(21), e202400701. https://doi.org/10.1002/asia.202400701

[25] Jiang M, Althomali RH, Ansari SA, Saleh EAM, Gupta J, Kambarov KD, Alsaab HO, Alwaily ER, Hussien BM, Mustafa YF, Narmani A, Farhood B. (2023) Advances in preparation, biomedical, and pharmaceutical applications of chitosan-based gold, silver, and magnetic nanoparticles: A review. Int J Biol Macromol. 251:126390. https://doi.org/10.1016/j.ijbiomac.2023.126390

[26] Kumar P, Agnihotri S, Roy I. (2018) Preparation and characterization of superparamagnetic iron oxide nanoparticles for magnetically guided drug delivery. Int J Nanomedicine. 13(T-NANO 2014 Abstracts):43-46 https://doi.org/10.2147/IJN.S125002

[27] Lateef, A., Elegbede, J. A., Akinola, P. O., & Ajayi, V. A. (2019). Biomedical applications of green synthesized-metallic nanoparticles: a review. Pan Afr J Life Sci, 3, 157-182. https://doi.org/10.1016/j.eti.2021.102077

[28] Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW. (2010) Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem. 398(2):689-700. https://doi.org/10.1007/s00216-010-3915-1

[29] Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR. (2017) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev. 6(3):301-329. https://doi.org/10.1515/ntrev-2016-0014

[30] Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. (2023) A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. Environ Sci Pollut Res Int. 30(27):69796-69823. doi: https://doi.org/10.1007/s11356-023-27437-9

[31] Matsumura, T., Fukunishi, M., & Matsumoto, F. (2025). The Relationship between the Electronic State of Pt in Pt-Based Nanoparticle Catalysts and Their Electrochemical Catalytic Activity in the Oxidation of Small Organic Compounds. ACS omega, 10(10), 10060-10070. https://doi.org/10.1021/acsomega.4c08380

[32] Moradi F, Ghaedi A, Fooladfar Z, Bazrgar A. (2023) Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: A systematic review. Heliyon. 9(11):e22105. https://doi.org/10.1016/j.heliyon.2023.e22105

[33] Mousa SA, Wissa DA, Hassan HH, Ebnalwaled AA, Khairy SA. (2024) Enhanced photocatalytic activity of green synthesized zinc oxide nanoparticles using low-cost plant extracts. Sci Rep. 14(1):16713. 10.1038/s41598-024-66975-1. PMID: 39030264; PMCID: PMC11271574.

[34] Oliveira JM, Silva DPD, Floresta LRS, Rocha GG, Almeida LIM, Dias EHV, Lima TK, Marinho JZ, Lima MM, Valer FB, Oliveira F, Rocha TL, Alvino V, Anhezini L, Silva ACA. (2024) Tuning Biocompatibility and Bactericidal Efficacy as a Function of Doping of Gold in ZnO Nanocrystals. ACS Omega. 10;9(20):21904-21916.https://doi.org/10.1021/acsomega.3c09680

[35] Pandey, S., Shahi, S. (2024), Biosensors from Nature: Harnessing Natural Products for Advanced Technology, Journal of Electrical Systems, 20 (10s), 5045-5055, https://doi.org/10.52783/jes.6186

[36] Panigaj, M., Basu Roy, T., Skelly, E., Chandler, M. R., Wang, J., Ekambaram, S., ... & Afonin, K. A. (2025). Autonomous Nucleic Acid and Protein Nanocomputing Agents Engineered to Operate in Living Cells. ACS nano. https://doi.org/10.1021/acsnano.4c13663

[37] Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. (2024) From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. Discov Nano. 19(1):85. https://doi.org/10.1186/s11671-024-04021-9

[38] Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E. (2023) Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci. 24(20):15397. https://doi.org/10.3390/ijms242015397

[39] Roszczenko, P., Szewczyk, O. K., Czarnomysy, R., Bielawski, K., & Bielawska, A. (2022). Biosynthesized Gold, Silver, Palladium, Platinum, Copper, and Other Transition Metal Nanoparticles. Pharmaceutics, 14(11), 2286. https://doi.org/10.3390/pharmaceutics14112286

[40] Salem, S. S., Hammad, E. N., Mohamed, A. A., & El-Dougdoug, W. (2022). A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem, 13(1), 41. https://doi.org/10.33263/BRIAC131.041

[41] Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, Kumar G. (2018) New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res Int. 25(11):10164-10183. https://doi.org/10.1007/s11356-017-9912-6

[42] Sarvalkar, P. D., Tibe, A. P., Kamble, S. S., Karvekar, O. S., Teli, S. B., Powar, P. S., ... & Sharma, K. K. K. (2024). Bio-inspired synthesis of biologically and catalytically active silver chloride-anchored Palladium/Gold/Silver Trimetallic nanoparticles. Catalysis Communications, 187, 106897. https://doi.org/10.1016/j.rineng.2024.102094

[43] Scroccarello A, Della Pelle F, Del Carlo M, Compagnone D. (2023) Optical plasmonic sensing based on nanomaterials integrated in solid supports. A critical review. Anal Chim Acta. 1237:340594. https://doi.org/10.1016/j.aca.2022.340594

[44] Shahi, D. S., Shilja (2023), Green Synthesis and Characterization of Gold Nanoparticles for Antibacterial and Antifungal Activities Using Leaf Extracts of Annona Muricata, Migration Letters, 20 (S-13), 161-168, https://doi.org/10.59670/ml.v20iS13.6280

[45] Shahi, S., Singh, S. K., (2023), Biosynthesis Of Nanoparticles Using Milk Oligosaccharides, Journal of Advanced Zoology, 44 (5), 805-811, https://doi.org/10.53555/jaz.v44i5.3241

[46] Shahi, S., Singh, S. K., (2024), Microfluidic Devices with Nano-sensors for Infectious Disease Detection, Nanotechnology Perceptions, 20 (14s), 3369-3377, https://doi.org/10.62441/nano-ntp.vi.3295

[47] Singh, I., Verma, S., Shahi, S. (2021), Properties and Application of Carbon Nanotubes: A Review, International Journal of Mechanical Engineering, 6s, 1050-1056, https://www.kalaharijournals.com/resources/SP-Vol.6_144.pdf

[48] Singh, I., Verma, S., Shahi, S. (2022), Biomedical Application of Carbon Nanotubes- A Review, Jundishapur Journal Of Microbiology, 15 (1), 7584-7597, https://jjmicrobiol.com/index.php/jjm/article/view/960

[49] Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. (2024) Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. Sci Total Environ. 926:171862. https://doi.org/10.1016/j.scitotenv.2024.171862

[50] Yang, L., Grzeschik, R., Jiang, P., Yu, L., Hu, C., Du, A., ... & Xie, W. (2023). Tuning the electronic properties of platinum in hybrid‐nanoparticle assemblies for use in hydrogen evolution reaction. Angewandte Chemie International Edition, 62(25), e202301065. https://doi.org/10.1021/acsnano.5c04810

[51] Zamborini FP, Bao L, Dasari R. (2012) Nanoparticles in measurement science. Anal Chem. 84(2):541-76. doi: https://doi.org/10.1021/ac203233q

[52] Zhu C, Wang X. (2025) Nanomaterial ZnO Synthesis and Its Photocatalytic Applications: A Review. Nanomaterials. 15(9):682. https://doi.org/10.3390/nano15090682

Downloads

Published

2025-04-25

How to Cite

Shahi, S. (2025). Tailoring Metal Nanoparticles: A Comparative Assessment of Au, Ag, Cu, Zn, Pt, and Fe for Targeted Applications. Stallion Journal for Multidisciplinary Associated Research Studies, 4(2), 320–331. https://doi.org/10.55544/sjmars.4.2.22

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.