Carbohydrate-Rich Dietary Fiber, Gut Health and Systemic Inflammation
DOI:
https://doi.org/10.55544/sjmars.4.3.14Keywords:
Dietary Fiber, Systemic Inflammation, Short-Chain Fatty Acids (SCFAs), Lipopolysaccharides (LPS), Glycosidic Linkages, Colonic FermentationAbstract
Chronic low-grade systemic inflammation (CLGSI) is a fundamental pathophysiological driver of a spectrum of metabolic dysfunctions, including obesity, insulin resistance, and type 2 diabetes. A key instigator of this inflammatory state is a compromised intestinal epithelial barrier, often characterized by increased paracellular permeability. This "leaky gut" phenotype facilitates the translocation of microbial-derived products, such as lipopolysaccharides (LPS), from the intestinal lumen into systemic circulation, a phenomenon termed metabolic endotoxemia. From a carbohydrate chemistry perspective, dietary fiber comprises a diverse class of non-digestible polysaccharides and oligosaccharides, with varying degrees of polymerization and glycosidic linkages that resist enzymatic hydrolysis in the human small intestine. These complex carbohydrates serve as a crucial substrate for colonic microbial fermentation. This hypothetical research article elucidates the intricate relationship between the chemical structure of dietary fibers, their metabolic fate in the gut, and their physiological impact on gut barrier integrity and systemic inflammation. A simulated randomized controlled trial is proposed to investigate the effects of a high-fiber dietary intervention, rich in fermentable polysaccharides, on gut barrier function. We hypothesize that the microbial fermentation of these carbohydrates yields beneficial short-chain fatty acids (SCFAs)—primarily acetate, propionate, and butyrate—which act as signaling molecules and energy substrates for colonocytes. This process is posited to enhance the expression of tight junction proteins (e.g., zonulin-1, occludin) and reduce systemic LPS levels, thereby mitigating CLGSI. The findings of this study are discussed in the context of sustainable metabolic health management, highlighting how a diet rich in complex, non-digestible carbohydrates can concurrently improve human well-being and contribute to environmental sustainability. This framework underscores the therapeutic potential of carbohydrate-based dietary interventions in the amelioration of chronic inflammatory diseases.
References
[1] Ajani, U. A., Ford, E. S., & Mokdad, A. H. (2004). Dietary fiber and C-reactive protein: findings from national health and nutrition examination survey data. The Journal of nutrition, 134(5), 1181–1185. https://doi.org/10.1093/jn/134.5.1181
[2] Ambroselli, D., Masciulli, F., Romano, E., Catanzaro, G., Besharat, Z. M., Massari, M. C., Ferretti, E., Migliaccio, S., Izzo, L., Ritieni, A., Grosso, M., Formichi, C., Dotta, F., Frigerio, F., Barbiera, E., Giusti, A. M., Ingallina, C., & Mannina, L. (2023). New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients, 2023, 15(3), 640. https://doi.org/10.3390/nu15030640
[3] Amisi C. A. Markers of insulin resistance in Polycystic ovary syndrome women: An update. World journal of diabetes, 2022, 13(3), 129–149. https://doi.org/10.4239/wjd.v13.i3.129
[4] Belete, R., Ataro, Z., Abdu, A., & Sheleme, M. Global prevalence of metabolic syndrome among patients with type I diabetes mellitus: a systematic review and meta-analysis. Diabetology & metabolic syndrome, 2021, 13 (1), 25. https://doi.org/10.1186/s13098-021-00641-8
[5] Canfora, E. E., Jocken, J. W., & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature reviews. Endocrinology, 2015, 11(10), 577–591. https://doi.org/10.1038/nrendo.2015.128
[6] Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Delzenne, N. M., … Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761–1772. https://doi.org/10.2337/db06-1491
[7] Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 2008, 57(6), 1470–1481. https://doi.org/10.2337/db07-1403
[8] Czarnowski, P., Mikula, M., Ostrowski, J., & Żeber-Lubecka, N. Gas Chromatography-Mass Spectrometry-Based Analyses of Fecal Short-Chain Fatty Acids (SCFAs): A Summary Review and Own Experience. Biomedicines, 2024, 12(8), 1904. https://doi.org/10.3390/biomedicines12081904
[9] de La Serre, C. B., Ellis, C. L., Lee, J., Hartman, A. L., Rutledge, J. C., & Raybould, H. E. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. American journal of physiology. Gastrointestinal and liver physiology, 2010, 299(2), G440–G448. https://doi.org/10.1152/ajpgi.00098.2010
[10] Dreher M. L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients, 2018, 10(12), 1833. https://doi.org/10.3390/nu10121833
[11] Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Annals of the New York Academy of Sciences, 2012, 1258(1), 25–33. https://doi.org/10.1111/j.1749-6632.2012.06538.x
[12] Fung, T. T., Hu, F. B., Pereira, M. A., Liu, S., Stampfer, M. J., Colditz, G. A., & Willett, W. C. Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. The American journal of clinical nutrition, 2002, 76(3), 535–540. https://doi.org/10.1093/ajcn/76.3.535
[13] Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews. Gastroenterology & hepatology, 2017, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
[14] Giovannini, S., Onder, G., Liperoti, R., Russo, A., Carter, C., Capoluongo, E., Pahor, M., Bernabei, R., & Landi, F. (2011). Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, community-living elderly individuals. Journal of the American Geriatrics Society, 2011, 59(9), 1679–1685. https://doi.org/10.1111/j.1532-5415.2011.03570.x
[15] Hall, C. V., Hepsomali, P., Dalile, B., Scapozza, L., & Gurry, T. (2024). Effects of a diverse prebiotic fibre blend on inflammation, the gut microbiota and affective symptoms in metabolic syndrome: a pilot open-label randomised controlled trial. The British journal of nutrition, 2024, 132(8), 1002–1013. https://doi.org/10.1017/S0007114524002186
[16] Holscher H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut microbes, 2017, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756
[17] Hu, Y., Ding, M., Sampson, L., Willett, W. C., Manson, J. E., Wang, M., Rosner, B., Hu, F. B., & Sun, Q. Intake of whole grain foods and risk of type 2 diabetes: results from three prospective cohort studies. BMJ (Clinical research ed.), 2020, 370, m2206. https://doi.org/10.1136/bmj.m2206
[18] Ioniță-Mîndrican, C. B., Ziani, K., Mititelu, M., Oprea, E., Neacșu, S. M., Moroșan, E., Dumitrescu, D. E., Roșca, A. C., Drăgănescu, D., & Negrei, C. Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review. Nutrients, 2022, 14(13), 2641. https://doi.org/10.3390/nu14132641
[19] Kadam, P., Shahi, S., Singh, S. K. (2024) Transforming Medicine: A Comprehensive Review of Artificial Intelligence in Healthcare, African Journal of Biological Sciences, 6 (11), 1836-1842 https://doi.org/10.48047/AFJBS.6.11.2024.1836-1842
[20] Kopelman P. G. Obesity as a medical problem. Nature, 2000, 404(6778), 635–643. https://doi.org/10.1038/35007508
[21] Kunzmann, A. T., Coleman, H. G., Huang, W. Y., Kitahara, C. M., Cantwell, M. M., & Berndt, S. I. (2015). Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. The American journal of clinical nutrition, 102(4), 881–890. https://doi.org/10.3945/ajcn.115.113282
[22] Landry, M. J., & Ward, C. P. Health Benefits of a Plant-Based Dietary Pattern and Implementation in Healthcare and Clinical Practice. American journal of lifestyle medicine, 2024, 18(5), 657–665. https://doi.org/10.1177/15598276241237766
[23] Liu, H., Zhu, J., Gao, R., Ding, L., Yang, Y., Zhao, W., Cui, X., Lu, W., Wang, J., & Li, Y. Estimating effects of whole grain consumption on type 2 diabetes, colorectal cancer and cardiovascular disease: a burden of proof study. Nutrition journal, 2024, 23(1), 49. https://doi.org/10.1186/s12937-024-00957-x
[24] Mishra, P., Singh, U., Pandey, C. M., Mishra, P., & Pandey, G. Application of student's t-test, analysis of variance, and covariance. Annals of cardiac anaesthesia, 2019, 22(4), 407–411. https://doi.org/10.4103/aca.ACA_94_19
[25] Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in immunology, 2019, 10, 277. https://doi.org/10.3389/fimmu.2019.00277
[26] Poore, J., & Nemecek, T. Reducing food's environmental impacts through producers and consumers. Science (New York, N.Y.), 2018, 360(6392), 987–992. https://doi.org/10.1126/science.aaq0216
[27] Saa, L. R., Valiño Cabrera, E. C., Savón Valdés, L. L., García Hernández, Y., Dustet Mendoza, J. C., & Alberto Vazquez, M. Sustainable Biomass Valorization by Solid-State Fermentation with the Mutant Strain Trichoderma viride M5-2 of Forage Legumes to Improve Their Nutritional Composition as Animal Feed. Sustainability, 2025, 17(11), 4990. https://doi.org/10.3390/su17114990
[28] Saraswathi, V., Kumar, N., Gopal, T., Bhatt, S., Ai, W., Ma, C., Talmon, G. A., & Desouza, C. Lauric Acid versus Palmitic Acid: Effects on Adipose Tissue Inflammation, Insulin Resistance, and Non-Alcoholic Fatty Liver Disease in Obesity. Biology, 2020, 9(11), 346. https://doi.org/10.3390/biology9110346
[29] Schoultz, I., & Keita, Å. V. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells, 2020, 9(8), 1909. https://doi.org/10.3390/cells9081909
[30] Seethaler, B., Basrai, M., Neyrinck, A. M., Nazare, J. A., Walter, J., Delzenne, N. M., & Bischoff, S. C. (2021). Biomarkers for assessment of intestinal permeability in clinical practice. American journal of physiology. Gastrointestinal and liver physiology, 2021, 321(1), G11–G17. https://doi.org/10.1152/ajpgi.00113.2021
[31] Sekirov, I., Russell, S. L., Antunes, L. C., & Finlay, B. B. Gut microbiota in health and disease. Physiological reviews, 2010, 90(3), 859–904. https://doi.org/10.1152/physrev.00045.2009
[32] Shahi, D. S., Deepak, D. (2018), Isolation Of Oligosaccharides And Antimicrobial Activity Of Gaddi Sheep’s Milk, Eurasian Journal of Analytical Chemistry, 13 (5), 795-803. https://eurasianjournals.com/index.php/ej/article/view/795
[33] Shahi, D. S., Deepak, D. S. (2018), Separation And Structure Elucidation Of Novel Decasachharide “Oviasose” From Gaddi Sheep’s Milk, Eurasian Journal of Analytical Chemistry, 13(5), 1001-1011. https://eurasianjournals.com/index.php/ej/article/view/1001
[34] Shahi, D. S., Singh, S. K. (2018), Segregation And Structural Interpretation Of Novel Tetrasachharides “Isose” By NMR and Mass Spectroscopy, Eurasian Journal of Analytical Chemistry, Vol. 13 (5). 992-1000, https://eurasianjournals.com/index.php/ej/article/view/1000
[35] Shahi, S. (2020), “Gaddiose” Isolation and Structure Interpretation of Novel Heptasaccharide from Gaddi Sheep’s Milk, International Journal of Advanced Sciences and Technology, Vol. 29 (9s), 4455-4463, http://sersc.org/journals/index.php/IJAST/article/view/16926
[36] Shahi, S., Singh, H. K., Deepak, D., Singh, S. K. (2021), “Gadose” Isolation and Structure Elucidation Of Novel Octasaccharide From Gaddi Sheep’s Milk. Annals of the Romanian Society for Cell Biology, 25 (4), 20193-20206, http://annalsofrscb.ro/index.php/journal/article/view/9115/6777
[37] Shahi, S., Singh, H. K., Shukla, C. S., Deepak, D. Singh, S. K. (2020), The Biological Utilization of Gaddi Sheep’s Milk Oligosaccharides, Journal of Critical Reviews; 7 (15), 2061-2068, https://jcreview.com/archives/volume-7/issue-15/8688
[38] Shahi, S., Singh, H. K., Shukla, C. S., Deepak, D. Singh, S. K. (2020), Anti-Fungal Bioactivity of Gaddi Sheep’s Milk Oligosaccharide, International Journal of Advanced Sciences and Technology, Vol. 29 (11s), 2051-2058, http://sersc.org/journals/index.php/IJAST/article/view/22585
[39] Shahi, S., Singh, S.K. (2019), Biological Importance of Milk Oligosaccharides Isolated from Gaddi Sheep’s Milk, Eurasian Journal of Biological Science, 13 (2), 1245-1249, https://www.proquest.com/openview/73c7a2596bb57e83b9212c7233bdd79f/
[40] Sharma, M., Vidhya C. S., Ojha, K., Yashwanth B. S., Singh, B., Gupta, S., & Pandey, S. K. The Role of Functional Foods and Nutraceuticals in Disease Prevention and Health Promotion. European Journal of Nutrition & Food Safety, 2024, 16(2), 61–83. https://doi.org/10.9734/ejnfs/2024/v16i21388
[41] Sinclair, J., West, N. P., & Cox, A. J. Comparison of four DNA extraction methods for 16s rRNA microbiota profiling of human faecal samples. BMC research notes, 2023, 16(1), 169. https://doi.org/10.1186/s13104-023-06451-7
[42] Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients, 2013, 5(4), 1417–1435. https://doi.org/10.3390/nu5041417
[43] So, D., Whelan, K., Rossi, M., Morrison, M., Holtmann, G., Kelly, J. T., Shanahan, E. R., Staudacher, H. M., & Campbell, K. L. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. The American journal of clinical nutrition, 2018, 107(6), 965–983. https://doi.org/10.1093/ajcn/nqy041
[44] Tirosh, A., Calay, E. S., Tuncman, G., Claiborn, K. C., Inouye, K. E., Eguchi, K., Alcala, M., Rathaus, M., Hollander, K. S., Ron, I., Livne, R., Heianza, Y., Qi, L., Shai, I., Garg, R., & Hotamisligil, G. S. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Science translational medicine, 2019, 11(489), eaav0120. https://doi.org/10.1126/scitranslmed.aav0120
[45] Tripathy, P., Shahi, S. (2024), AI‐Powered Mining of Nature's Chemical Library:
Unveiling the Therapeutic Potential of Natural Products, Research Journal Pharmacology, 18 (3), 32-37, https://doi.org/10.36478/makrjp.2024.3.32.37
[46] Wu, T., Seaver, P., Lemus, H., Hollenbach, K., Wang, E., & Pierce, J. P. Associations between Dietary Acid Load and Biomarkers of Inflammation and Hyperglycemia in Breast Cancer Survivors. Nutrients, 2019, 11(8), 1913. https://doi.org/10.3390/nu11081913
[47] Yang, M., Liu, S., & Zhang, C. The Related Metabolic Diseases and Treatments of Obesity. Healthcare, 2022, 10(9), 1616. https://doi.org/10.3390/healthcare10091616
[48] Zhao, X., Lu, C., Song, B., Chen, D., Teng, D., Shan, Z., & Teng, W. The prevalence and clustering of metabolic syndrome risk components in Chinese population: a cross-sectional study. Frontiers in endocrinology, 2023, 14, 1290855. https://doi.org/10.3389/fendo.2023.1290855
[49] Zhou, H., Urso, C. J., & Jadeja, V. (2020). Saturated Fatty Acids in Obesity-Associated Inflammation. Journal of Inflammation research, 2020, 13, 1–14. https://doi.org/10.2147/JIR.S229691
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Stallion Journal for Multidisciplinary Associated Research Studies

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.