Article Review: Unveiling the Potential of Clostridium acetobutylicum for Biofuel Production
DOI:
https://doi.org/10.55544/sjmars.3.4.10Keywords:
ABE fermentation, Butanol production, Clostridium acetobutylicum, Metabolic engineering, Sustainable biofuelsAbstract
The acetone-butanol-ethanol (ABE) fermentation is a significant and classic example of bacterial fermentation, particularly in the production of butanol, a valuable feedstock for the chemical industry. Originating during the First World War to produce acetone for cordite manufacturing, the ABE process has historically been overshadowed by the cheaper petrochemical production of solvents, leading to its discontinuation. However, increasing environmental concerns and the depletion of fossil fuel reserves have revived interest in ABE fermentation as a method to produce more sustainable biofuels. Despite extensive knowledge of butanol metabolism and the involvement of various clostridia species, genetic manipulation of these bacteria remains limited, restricting efforts to optimize them for industrial-scale ABE solvent production. For example, understanding and enhancing solvent formation within the ABE pathway, particularly increasing butanol production while reducing acid and acetone byproducts, is crucial for industrial applications. Advances in metabolic engineering of Clostridium acetobutylicum, such as gene knockout or insertion, offer potential for improving ABE production, although this research is still in its early stages. The complete sequencing of the C. acetobutylicum genome presents opportunities for more sophisticated genetic modifications, with the reversible butanol dehydrogenase system being a key target. Additionally, high-throughput techniques like DNA microarrays can be employed to study the effects of genetic changes on global gene expression, aiding in the identification of factors influencing butanol formation. Ultimately, the development of strains capable of producing butanol more efficiently could lead to its large-scale production as a sustainable biofuel, with C. acetobutylicum playing a central role due to its performance in ABE fermentation. Despite the progress, further research and technological advancements are needed to make this process economically viable for widespread industrial use.
References
Al-Hinai, M. A., Jones, S. W., & Papoutsakis, E. T. (2014). σ^K of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. Journal of Bacteriology, 196(2), 345-357.
Ballesteros-Paredes, J., André, P., Hennebelle, P., Klessen, R. S., Kruijssen, J. D., Chevance, M., ... & Vazquez-Semadeni, E. (2020). From diffuse gas to dense molecular cloud cores. Space Science Reviews, 216, 1-58.
Bortolucci, J., Zani, A. C. B., de Gouvêa, P. F., Dinamarco, T. M., & Reginatto, V. (2023). A non-solventogenic Clostridium beijerinckii strain lacking acetoacetate decarboxylase assimilates acetate and accumulates butyrate. Biomass and Bioenergy, 172, 106780.
Cai, G., Jin, B., Monis, P., & Saint, C. (2013). A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production. Biotechnology and Bioengineering, 110(1), 338-342. https://doi.org/10.1002/bit.24596
Chua, M. (2022). Gene order alignment on a phylogeny with BOPAL 2.0. umanitoba.ca
Du, G., Che, J., Wu, Y., Wang, Z., Jiang, Z., Ji, F., & Xue, C. (2021). Disruption of hydrogenase gene for enhancing butanol selectivity and production in Clostridium acetobutylicum. Biochemical Engineering Journal, 171, 108014.
Du, G., Wu, Y., Kang, W., Xu, Y., Li, S., & Xue, C. (2022). Enhanced butanol production in Clostridium acetobutylicum by manipulating metabolic pathway genes. Process Biochemistry.
Du, G., Zhu, C., Xu, M., Wang, L., Yang, S. T., & Xue, C. (2021). Energy-efficient butanol production by Clostridium acetobutylicum with histidine kinase knockouts to improve strain tolerance and process robustness. Green Chemistry.
El-Dalatony, M. M., Basak, B., Kurade, M. B., Roh, H. S., Jang, M., & Jeon, B. H. (2022). Effect of sonication pretreatment on hydrogen and acetone-butanol-ethanol coproduction from Chlamydomonas mexicana biomass using Clostridium acetobutylicum. Journal of Environmental Chemical Engineering, 10(3), 107600.
Fang, D., Wen, Z., Lu, M., Li, A., Ma, Y., Tao, Y., & Jin, M. (2020). Metabolic and process engineering of Clostridium beijerinckii for butyl acetate production in one step. Journal of Agricultural and Food Chemistry, 68(35), 9475-9487.
Fast, A. G., & Papoutsakis, E. T. (2018). Functional Expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in Clostridium acetobutylicum as Demonstrated by a Novel In Vivo CO Exchange Activity En Route to Heterologous Installation of a Functional Wood-Ljungdahl Pathway. Applied and Environmental Microbiology, 84(7),1-15.
Feng, J., Zhang, J., Ma, Y., Feng, Y., Wang, S., Guo, N., ... & Wang, Y. (2021). Renewable fatty acid ester production in Clostridium. Nature Communications, 12(1), 4368. nature.com
Fonseca, B. C., Bortolucci, J., da Silva, T. M., dos Passos, V. F., de Gouvêa, P. F., Dinamarco, T. M., & Reginatto, V. (2020). Butyric acid as sole product from xylose fermentation by a non-solventogenic Clostridium beijerinckii strain under controlled pH and nutritional conditions. Bioresource technology reports, 10, 100426.
Gao, R., Xiong, L., Wang, M., Peng, F., Zhang, H., & Chen, X. (2022). Production of acetone-butanol-ethanol and lipids from sugarcane molasses via coupled fermentation by Clostridium acetobutylicum and oleaginous yeasts. Industrial Crops and Products, 185, 115131.
Green, E. M., Boynton, Z. L., Harris, L. M., Rudolph, F. B., Papoutsakis, E. T., & Bennett, G. N. (1996). Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology, 142, 2079-2086.
Grupe, H., & Gottschalk, G. (1992). Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Applied and Environmental Microbiology, 58(12), 3896-3902.
Guerrero, K., Gallardo, R., González, E., Veliz, F., Conejeros, R., Gentina, J. C., & Aroca, G. (2022). Butanol production by Clostridium acetobutylicum ATCC 824 using electro‐fermentation in culture medium supplemented with butyrate and neutral red. Journal of Chemical Technology & Biotechnology, 97(6), 1526-1535.
Han, Y. F., Xie, B. T., Wu, G. X., Guo, Y. Q., Li, D. M., & Huang, Z. Y. (2020). Combination of trace metal to improve solventogenesis of Clostridium carboxidivorans P7 in syngas fermentation. Frontiers in Microbiology, 11, 577266. frontiersin.org
Inyang, V., Laseinde, O. T., & Kanakana, G. M. (2022). Techniques and applications of lignocellulose biomass sources as transport fuels and other bioproducts. International Journal of Low-Carbon Technologies, 17(4), 900–909. https://doi.org/10.1093/ijlct/ctac068
Jiang, Y., Lv, Y., Wu, R., Lu, J., Dong, W., Zhou, J., ... & Jiang, M. (2020). Consolidated bioprocessing performance of a two‐species microbial consortium for butanol production from lignocellulosic biomass. Biotechnology and Bioengineering, 117(10), 2985-2995.
Koller, M. (2023). Biotechnological approaches to generate biogenic solvents and energy carriers from renewable resources. The EuroBiotech Journal. sciendo.com
Kongjan, P., Usmanbaha, N., Khaonuan, S., Jariyaboon, R., Sompong, O., & Reungsang, A. (2021). Butanol production from algal biomass by acetone-butanol-ethanol fermentation process. In Clean Energy and Resources Recovery (pp. 421-446). Elsevier.
Kotte, A. K., Severn, O., Bean, Z., Schwarz, K., Minton, N. P., & Winzer, K. (2020). RRNPP-type quorum sensing affects solvent formation and sporulation in Clostridium acetobutylicum. Microbiology, 166(6), 579-592. microbiologyresearch.org
Kumar, M., Saini, S., & Gayen, K. (2023). Exploring the Influence of pH on the Dynamics of Acetone–Butanol–Ethanol Fermentation. Microorganisms. mdpi.com
Li, S., Huang, L., Ke, C., Pang, Z., & Liu, L. (2020). Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. Biotechnology for biofuels. springer.com
Lin, Z., Cong, W., & Zhang, J. (2023). Biobutanol Production from Acetone–Butanol–Ethanol Fermentation: Developments and Prospects. Fermentation. mdpi.com
Luo, H., Zheng, P., Bilal, M., Xie, F., Zeng, Q., Zhu, C., ... & Wang, Z. (2020). Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. Science of the total environment, 710, 136399.
Olorunsogbon, T., Adesanya, Y., Atiyeh, H. K., Okonkwo, C. C., Ujor, V. C., & Ezeji, T. C. (2022). Effects of Clostridium beijerinckii and Medium Modifications on Acetone–Butanol–Ethanol Production From Switchgrass. Frontiers in Bioengineering and Biotechnology, 10, 942701. frontiersin.org
Patakova, P., Branska, B., Vasylkivska, M., Jureckova, K., Musilova, J., Provaznik, I., & Sedlar, K. (2022). Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology Advances, 58, 107889.
Rezahasani, R., Khalili-Samani, A., Aghbashlo, M., Amiri, H., Tabatabaei, M., & Nizami, A. S. (2024). Sugar fermentation: C4 platforms. In Higher Alcohols Production Platforms (pp. 125-156). Academic Press.
Shinto, H., Tashiro, Y., Yamashita, M., Kobayashi, G., Sekiguchi, T., Hanai, T., Kuriya, Y., Okamoto, M., Sonomoto, K. (2007). Kinetic modeling and sensitivity analysis of aceton-butanol-ethanol production. Journal of Biotechnology 131(1), 45-56.
Sillers, R., Chow, A., Tracy, B., & Papoutsakis, E. T. (2008). Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrates the robustness of the acid-formation pathways and the importance of the electron balance. Metabolic Engineering, 10(6), 321-332.
Taconi, K. A., Venkataramanan, K. P., & Johnson, D. T. (2009). Growth and solvent production by Clostridium pasteurianum ATCC 6013 utilizing biodiesel-derived crude glycerol as the sole carbon source. Environmental Progress & Sustainable Energy, 28(2), 100-110.
Tomas, C. A., Welker, N. E., & Papoutsakis, E. T. (2003). Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Applied and Environmental Microbiology, 69(8), 4951-4965.
Tracy, B. P., Jones, S. W., Fast, A. G., Indurthi, D. C., & Papoutsakis, E. T. (2012). Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Current Opinion in Biotechnology, 23(3), 364-381.
Vamsi Krishna, K., Bharathi, N., George Shiju, S., Alagesan Paari, K., & Malaviya, A. (2022). An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. Environmental Science and Pollution Research, 29(32), 47988-48019.
Vees, C. A., Neuendorf, C. S., & Pflügl, S. (2020). Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. Journal of Industrial Microbiology & Biotechnology: Official Journal of the Society for Industrial Microbiology and Biotechnology, 47(9-10), 753-787. springer.com
Veza, I., Said, M. F. M., & Latiff, Z. A. (2021). Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass and Bioenergy.
Wu, Y., Wang, Z., Xin, X., Bai, F., & Xue, C. (2020). Synergetic engineering of central carbon, energy, and redox metabolisms for high butanol production and productivity by Clostridium acetobutylicum. Industrial & Engineering Chemistry Research, 59(39), 17137-17146.
Xin, X., Cheng, C., Du, G., Chen, L., & Xue, C. (2020). Metabolic engineering of histidine kinases in Clostridium beijerinckii for enhanced butanol production. Frontiers in Bioengineering and Biotechnology, 8, 214. frontiersin.org
Zhang, F., Zhang, K., Zhang, Z., Chen, H. Q., Chen, X. W., Xian, X. Y., & Wu, Y. R. (2023). Efficient isopropanol-butanol-ethanol (IBE) fermentation by a gene-modified solventogenic Clostridium species under the co-utilization of Fe (III) and butyrate. Bioresource Technology, 373, 128751.
Zhang, K., Hong, Y., Chen, C., & Wu, Y. R. (2021). Unraveling the unique butyrate re-assimilation mechanism of Clostridium sp. strain WK and the application of butanol production from red seaweed Gelidium amansii …. Bioresource Technology.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Stallion Journal for Multidisciplinary Associated Research Studies
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.