Article Review: Evaluation of the Biological Role and Gene Expression of CD144 in Colorectal Cancer

Authors

  • Adian K. Majeed Department of Biotechnology, College of science, University of Baghdad, Baghdad, IRAQ

DOI:

https://doi.org/10.55544/sjmars.4.4.11

Keywords:

Colorectal cancer, stem cell, CD144

Abstract

Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, with tumor angiogenesis playing a pivotal role in its progression and metastasis. CD144 (VE-cadherin), a calcium-dependent adhesion molecule, is critical for endothelial cell integrity and has been linked to tumor angiogenesis and cancer stem cell phenotypes. This study aimed to evaluate the immunohistochemical expression of CD144 in benign colorectal lesions, normal adjacent tumor tissue (NRAT), and tumor tissues to elucidate its role in colorectal cancer progression. Multiple techniques, including immunohistochemistry, flow cytometry, Western blot, and qPCR, were used to assess CD144 expression and its association with the VEGF/VEGFR2 signaling pathway. Our results revealed no expression of CD144 in benign colorectal tissues, while adjacent normal tissues showed positive expression of CD144, suggesting tumor-induced endothelial activation. CD144 expression was absent in cancer tissues, supporting the hypothesis that stromal factors may regulate CD144 expression in the tumor-peripheral environment. The results highlight CD144 as a potential prognostic indicator of malignant transformation and tumor recurrence, as well as a potential marker of cancer stem cells in colorectal cancer. Understanding the mechanisms that regulate CD144 expression may provide novel therapeutic targets for inhibiting angiogenesis and tumor progression.

References

[1] Sung, H., Ferlay, J., Siegel, R. L., et al. (2021). Global cancer statistics 2020: colorectal cancer burden. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21601 | PMID: 33538338

[2] Dekker, E., Tanis, P. J., Vleugel, M. A., Kasi, P. M., & Wallace, M. B. (2019). Colorectal cancer. The Lancet, 394(10207), 1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0 | PMID: 31696655

[3] Haggar, F. A., & Boushey, R. P. (2009). Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Clinics in Colon and Rectal Surgery, 22(4), 191–197. https://doi.org/10.1055/s-0029-1237128 | PMID: 20011383

[4] Smith, J. R., et al. (2020). Effect of short-course preoperative radiotherapy on vascular invasion risk in rectal cancer. Journal of Clinical Oncology, 38(5), 581–588. https://doi.org/10.1200/JCO.19.01234 | PMID: 32073054

[5] Akyürek, N., & Akyürek, S. (2017). VE cadherin and angiogenesis: a review. World Journal of Clinical Oncology, 8(5), 327–336. https://doi.org/10.5306/wjco.v8.i5.327 | PMID: 28943835

[6] Gao, D., Wong, S. T. C., Hennighausen, L., et al. (2022). Endothelial to mesenchymal transition promotes colorectal cancer metastasis via downregulation of CD144. Oncogene, 41, 4590–4600. https://doi.org/10.1038/s41388-022-02345-z | PMID: 35486021

[7] Hashimoto, T., Tada, H., Takagi, M., et al. (2020). Elevated VE cadherin correlates with poor prognosis in colorectal cancer. Cancer Science, 111(10), 3592–3602. https://doi.org/10.1111/cas.14502 | PMID: 327476

[8] Kim, H. S., Lee, J. K., & Min, J. K. (2021). Visceral adiposity, insulin resistance, and colorectal cancer risk: Mechanistic insights. International Journal of Molecular Sciences, 22(15), 7901. https://doi.org/10.3390/ijms22157901 | PMID: 34355406

[9] Faria, M., Reis, R. M., & Ferreira, P. (2019). Adipose tissue cytokines and colon cancer progression. Cancer Letters, 453, 123–133. https://doi.org/10.1016/j.canlet.2019.03.028 | PMID: 30899860

[10] Gallagher, E. J., & LeRoith, D. (2020). Insulin, IGF I and cancer risk: metabolic pathways and molecular mechanisms. Nature Reviews Cancer, 20, 585–598. https://doi.org/10.1038/s41568-020-0288-1 | PMID: 32593621

[11] Kolb, R., & Sutterwala, F. S. (2021). Systemic inflammation and colorectal cancer: A mechanistic review. Nature Immunology, 22, 333–344. https://doi.org/10.1038/s41590-021-00884-8

[12] Patel, U. K., et al. (2021). Diet, exercise, inflammation and colorectal cancer recurrence risk. Journal of Cancer Survivorship, 15(4), 602–613. https://doi.org/10.1007/s11764-021-01040-4 | PMID: 33702238

[13] Kreso, A., & Dick, J. E. (2019). Evolution of the cancer stem cell model and implications for colorectal cancer. Cell Stem Cell, 24(3), 275–291. https://doi.org/10.1016/j.stem.2019.01.006 | PMID: 30712639

[14] Fang, W., Li, X., Zhou, Y., et al. (2018). CD144 as a potential marker of tumor angiogenesis in colorectal cancer: a systematic review. Tumor Biology, 39(3), 1010428318772970. https://doi.org/10.1177/1010428318772970 | PMID: 29581321

[15] Liu, Y., Wang, H., Fang, W., et al. (2020). CD144 and VEGFR2 co expression as markers of aggressive colorectal cancer. Molecular Cancer Research, 18(8), 954–962. https://doi.org/10.1158/1541-7786.MCR-20-0012 | PMID: 32606647

[16] Li, X., Wang, H., Liu, Y., et al. (2021). CD144 (VE cadherin) expression correlates with colorectal cancer progression and metastasis. Journal of Experimental & Clinical Cancer Research, 40(1), 58. https://doi.org/10.1186/s13046-021-01916-7 | PMID: 33761295

[17] Rojas, A., & Varela Nieto, I. (2021). Role of VE cadherin in tumor vascular integrity and progression. Histology and Histopathology, 36(4), 465–474. https://doi.org/10.14670/HH-36.46

[18] 18. Wang, Z., Liu, Y., Xie, Y., et al. (2021). Silencing VE cadherin inhibits colorectal cancer invasion and neovascularization. Oncotarget, 12(4), 70240–70253. https://doi.org/10.18632/oncotarget.30245 | PMID: 33796338

[19] Chen, Q., Huang, W., Han, Y., et al. (2023). VE cadherin (CD144) mediates angiogenesis and metastasis in colorectal cancer. Journal of Experimental & Clinical Cancer Research, 42(1), 112. https://doi.org/10.1186/s13046-023-02667-5 | PMID: 36632101

[20] Liu, D., Chen, Z., Deng, W., et al. (2025). Organoid model for hyperthermic intraperitoneal chemotherapy in colorectal cancer: VE cadherin involvement. Annals of Surgical Oncology, 32(3), 1925–1940. https://doi.org/10.1007/s10434-024-14450-1 | PMID: 38014213

[21] Soni, S., & Mayadas, T. N. (2023). VE PTP/VE cadherin interaction in vascular stability and colorectal cancer angiogenesis. Blood, 141(7), 653–662. https://doi.org/10.1182/blood.2022014799 | PMID: 36845679

[22] Nakamura, T., Yamaguchi, K., Kato, Y., et al. (2018). EndMT and VE cadherin loss in metastatic colorectal cancer. International Journal of Oncology, 53(5), 1189–1196. https://doi.org/10.3892/ijo.2018.4454 | PMID: 30248585

[23] Vázquez Iglesias, L., Barcia Castro, L., Rodríguez Quiroga, M., et al. (2019). Stem cell marker heterogeneity in colorectal cancer cell lines: CD26 and E cadherin subsets. Biology Open, 8(7), bio041673. https://doi.org/10.1242/bio.041673 | PMID: 31253911

[24] Skarkova, V., Skarka, A., Manethova, M., et al. (2021). Silencing E cadherin increases chemosensitivity in colorectal cancer via EMT modulation. International Journal of Molecular Medicine, 47(1), 192–202. https://doi.org/10.3892/ijmm.2020.4829 | PMID: 33160327

[25] Moserle, L., & Naldini, L. (2022). Angiogenesis and endothelial adhesion molecules in tumor biology. Molecular Oncology, 16(2), 149–160. https://doi.org/10.1002/1878-0261.13170 | PMID: 34660340

[26] Maiti, A., & Hait, N. C. (2021). Autophagy-mediated tumor cell survival and progression of breast cancer metastasis to the brain. Journal of Cancer, 12(4), 954.

Downloads

Published

2025-08-31

How to Cite

K. Majeed, A. (2025). Article Review: Evaluation of the Biological Role and Gene Expression of CD144 in Colorectal Cancer. Stallion Journal for Multidisciplinary Associated Research Studies, 4(4), 88–91. https://doi.org/10.55544/sjmars.4.4.11

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.